2025届山东省日照市实验二中学数学九上开学预测试题【含答案】
展开
这是一份2025届山东省日照市实验二中学数学九上开学预测试题【含答案】,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式中,运算正确的是
A.B.C.D.
2、(4分)化简的结果是( ).
A.B.C.D.
3、(4分)如图所示,矩形的面积为,它的两条对角线交于点,以、为邻边作平行四边形,平行四边形的对角线交于点,同样以、为邻边作平行四边形,……,依次类推,则平行四边形的面积为( )
A.B.C.D.
4、(4分)直线与轴的交点坐标为( )
A.B.C.D.
5、(4分)如图所示是根据某班级名同学一周的体育锻炼情况绘制的统计图,由图像可知该班同学一周参加体育锻炼时间的中位数,众数分别是( )
A.,
B.,
C.,
D.,
6、(4分)已知一次函数与的图象如图所示,则关于的不等式的解集为( )
A.B.C.D.
7、(4分)定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是( )
A.方有两个相等的实数根B.方程有一根等于0
C.方程两根之和等于0D.方程两根之积等于0
8、(4分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.下列说法正确的是( )
A.小明的成绩比小强稳定
B.小明、小强两人成绩一样稳定
C.小强的成绩比小明稳定
D.无法确定小明、小强的成绩谁更稳定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有 桶.
10、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…、正方形AnBn∁nCn﹣1按如图方式放置,点A1、A2、A3、…在直线y=x+1上,点C1、C2、C3、…在x轴上.已知A1点的坐标是(0,1),则点B3的坐标为_____,点Bn的坐标是_____.
11、(4分)如图,已知矩形ABCD的边AB=3,AD=8,顶点A、D分别在x轴、y轴上滑动,在矩形滑动过程中,点C到原点O距离的最大值是______.
12、(4分)《算法统宗》记载古人丈量田地的诗:“昨日丈量地回,记得长步整三十.广斜相并五十步,不知几亩及分厘.”其大意是:昨天丈量了田地回到家,记得长方形田的长为30步,宽和对角线之和为50步.不知该田有几亩?请我帮他算一算,该田有___亩(1亩=240平方步).
13、(4分)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的解集为____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形ABCD中,AB=9,AD=4. E为CD边上一点,CE=6. 点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.
(1)求AE的长;
(2)当t为何值时,△PAE为直角三角形;
(3)是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.
15、(8分)某校在一次大课间活动中,采用了四种活动形式:A:跑步;B:跳绳;C:做操;D:游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图,结合统计图,回答下列问题:
(1)本次调查学生共 人,并将条形图补充完整;
(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
(3)学校在每班A、B、C、D四种活动形式中,随机抽取两种开展活动,求每班抽取的两种形式恰好是“做操”和“跳绳”的概率.
16、(8分)几何学的产生,源于人们对土地面积测量的需要,以面积早就成为人们认识图形性质与几何证明的有效工具,可以说几何学从一开始便与面积结下了不解之缘.我们已经掌握了平行四边形面积的求法,但是一般四边形的面积往往不易求得,那么我们能否将其转化为平行四边形来求呢?
(1)方法1:如图①,连接四边形的对角线,,分别过四边形的四个顶点作对角线的平行线,所作四条线相交形成四边形,易证四边形是平行四边形.请直接写出S四边形ABCD和之间的关系:_______________.
方法2:如图②,取四边形四边的中点,,,,连接,,,,
(2)求证:四边形是平行四边形;
(3)请直接写出S四边形ABCD与之间的关系:_____________.
方法3:如图③,取四边形四边的中点,,,,连接,交于点.先将四边形绕点旋转得到四边形,易得点,,在同一直线上;再将四边形绕点旋转得到四边形,易得点,,在同一直线上;最后将四边形沿方向平移,使点与点重合,得到四边形;
(4)由旋转、平移可得_________,_________,所以,所以点,,在同一直线上,同理,点,,也在同一点线上,所以我们拼接成的图形是一个四边形.
(5)求证:四边形是平行四边形.
(注意:请考生在下面2题中任选一题作答如果多做,则按所做的第一题计分)
(6)应用1:如图④,在四边形中,对角线与交于点,,,,则S四边形ABCD= .
(7)应用2:如图⑤,在四边形中,点,,,分别是,,,的中点,连接,交于点,,,,则S四边形ABCD=___________
17、(10分)学完三角形的高后,小明对三角形与高线做了如下研究:如图,是中边上的-点,过点、分别作、、、,垂足分别为点、、,由与的面积之和等于的面积,有等量关系式:.像这种利用同一平面图形的两种面积计算途径可以得出相关线段的数量关系式,从而用于解决数学问题的方法称为“等积法”,下面请尝试用这种方法解决下列问题.
图(1) 图(2)
(1)如图(1), 矩形中,,,点是上一点,过点作,,垂足分别为点、,求的值;
(2)如图(2),在中,角平分线、相交于点,过点分别作、,垂足分别为点、,若,,求四边形的周长.
18、(10分)已知等腰三角形的周长是,底边是腰长的函数。
(1)写出这个函数的关系式;
(2)求出自变量的取值范围;
(3)当为等边三角形时,求的面积。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于的一元二次方程有实数根,则的取值范围为______.
20、(4分)已知方程的一个根为,则常数__________.
21、(4分)如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东方向.问:小岛C于渔船的航行方向的距离是________________海里(结果可用带根号的数表示).
22、(4分)在矩形ABCD中,AB=2,AD=3,点P是BC上的一个动点,连接AP、DP,则AP+DP的最小值为_____.
23、(4分)如图,平分,,,则______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,将平行四边形ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.求证:四边形CEDF是平行四边形.
25、(10分)已知:正方形ABCD中,对角线AC、BD交于点O,过O点的两直线OE、OF互相垂直,分别交AB、BC于E、F,连接EF.
(1)求证:OE=OF;
(2)若AE=4,CF=3,求EF的长;
(3)若AB=8cm,请你计算四边形OEBF的面积.
26、(12分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:
根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)
(1)这6名选手笔试成绩的中位数是 分,众数是 分.
(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.
(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据合并同类项法则、同底数幂除法法则、幂的乘方的运算法则逐项进行判断即可得.
【详解】
A、,故A选项错误;
B、、不是同类项,不能合并,故B选项错误;
C、,故C选项错误;
D、,故D选项正确,
故选D.
本题考查了合并同类项、同底数幂除法、幂的乘方等,熟练掌握各运算的运算法则是解题的关键.
2、B
【解析】
根据三角形法则计算即可解决问题.
【详解】
解:原式
,
故选:B.
本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.
3、D
【解析】
因为矩形的对边和平行四边形的对边互相平行,且矩形的对角线和平行四边形的对角线都互相平分,所以上下两平行线间的距离相等,平行四边形的面积等于底×高,所以第一个平行四边形是矩形的一半,第二个平行四边形是第一个平行四边形的一半依次可推下去.
【详解】
解:根据题意分析可得:
∵四边形ABCD是矩形,
∴O1A=O1C,
∵四边形ABC1O1是平行四边形,,
∴O1C1∥AB,
∴BE=BC,
∵S矩形ABCD=AB•BC,S▱ABC1O1=AB•BE=AB•BC,
∴面积为原来的,
同理:每个平行四边形均为上一个面积的,
故平行四边形ABC5O5的面积为:,
故选:D.
此题综合考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
4、B
【解析】
令y=0,求出x的值即可得出结论.
【详解】
解:令y=0,则x=3,
∴直线y=x-3与x轴的交点坐标为(3,0).
故选:B.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
5、B
【解析】
根据中位数、众数的概念分别求解即可.
【详解】
将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;
众数是一组数据中出现次数最多的数,即8;
故选:B
考查了中位数、众数的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
6、A
【解析】
由图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式解集.
【详解】
两条直线的交点坐标为(1,2),且当x<1时,直线y2在直线y1的上方,故不等式的解集为x<1.
故选A.
本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
7、C
【解析】
试题分析:根据已知得出方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,再判断即可.
解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,
把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,
∴方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,
∴1+(﹣1)=0,
即只有选项C正确;选项A、B、D都错误;
故选C.
8、A
【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【详解】
∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.
平均成绩一样,小明的方差小,成绩稳定,
故选A.
本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
错因分析 容易题.失分原因是方差的意义掌握不牢.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
从俯视图中可以看出最底层方便面的个数及摆放的形状,从主视图可以看出每一层方便面的层数和个数,从左视图可看出每一行方便面的层数和个数,从而算出总的个数.所以三摞方便面是桶数之和为:3+1+2=1.
10、(7,4)(2n﹣1,2n﹣1).
【解析】
根据一次函数图象上点的坐标特征可得出点A1的坐标,结合正方形的性质可得出点B1的坐标,同理可得出点B2、B3、B4、…的坐标,再根据点的坐标的变化即可找出点Bn的坐标.
【详解】
当x=0时,y=x+1=1,
∴点A1的坐标为(0,1).
∵四边形A1B1C1O为正方形,
∴点B1的坐标为(1,1).
当x=1时,y=x+1=2,
∴点A2的坐标为(1,2).
∵四边形A2B2C2C1为正方形,
∴点B2的坐标为(3,2).
同理可得:点A3的坐标为(3,4),点B3的坐标为(7,4),点A4的坐标为(7,8),点B4的坐标为(15,8),…,
∴点Bn的坐标为(2n﹣1,2n﹣1).
故答案为:(7,4), (2n﹣1,2n﹣1)
本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合正方形的性质找出点Bn的坐标是解题的关键.
11、1
【解析】
取AD的中点E,连接OE,CE,OC,根据直角三角形斜边上的中线等于斜边的一半即可求出OE,然后根据勾股定理即可求CE,然后根据两点之间线段最短即可求出OC的最大值.
【详解】
如图,取AD的中点E,连接OE,CE,OC,
∵∠AOD=10°,
∴Rt△AOD中,OE=AD=4,
又∵∠ADC=10°,AB=CD=3,DE=4,
∴Rt△CDE中,CE==5,
又∵OC≤CE+OE=1(当且仅当O、E、C共线时取等号),
∴OC的最大值为1,
即点C到原点O距离的最大值是1,
故答案为:1.
此题考查的是直角三角形的性质和求线段的最值问题,掌握直角三角形斜边上的中线等于斜边的一半、利用勾股定理解直角三角形和两点之间线段最短是解决此题的关键.
12、1.
【解析】
根据矩形的性质、勾股定理求得长方形的宽,然后由矩形的面积公式解答.
【详解】
设该矩形的宽为x步,则对角线为(50﹣x)步,
由勾股定理,得301+x1=(50﹣x)1,
解得x=16
故该矩形的面积=30×16=480(平方步),
480平方步=1亩.
故答案是:1.
考查了勾股定理的应用,此题利用方程思想求得矩形的宽.
13、<-1
【解析】
根据图象求出不等式的解集即可.
【详解】
由图象可得
当时,直线y=-x+m的图象在直线y=nx+4n(n≠0)的图象的上方
故可得关于x的不等式-x+m>nx+4n的解集为
故答案为:<-1.
本题考查了解一元一次不等式的问题,掌握用图象法解一元一次不等式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)5;(2)6或;(3)存在,t=,理由见解析
【解析】
(1)在直角△ADE中,利用勾股定理进行解答;
(2)需要分类讨论:AE为斜边和AP为斜边两种情况下的直角三角形;
(3)假设存在.利用角平分线的性质,平行线的性质以及等量代换推知:∠PEA=∠EAP,则PE=PA,由此列出关于t的方程,通过解方程求得相应的t的值即可.
【详解】
解:(1)∵矩形ABCD中,AB=9,AD=4,
∴CD=AB=9,∠D=90°,
∴DE=9﹣6=3,
∴AE==5;
(2)①若∠EPA=90°,BP=CE=6,∴t=6;
②若∠PEA=90°,如图,
过点P作PH⊥PH⊥CD于H,∵四边形ABCD是矩形,
∴∠B=∠C=90°,
∴四边形BCHP是矩形,
∴CH=BP=t,PH=BC=4,
∴HE=CE-CH=6-t,
在Rt△PHE中,PE2=HE2+PH2=(6-t)2+42,
∵∠PEA=90°,
在Rt△PEA中,根据勾股定理得,PE2+AE2=AP2,
∴(6-t)2+42+52=(9-t)2,,
解得t=.
综上所述,当t=6或t=时,△PAE为直角三角形;
(3)假设存在.
∵EA平分∠PED,
∴∠PEA=∠DEA.
∵CD∥AB,
∴∠DEA=∠EAP,
∴∠PEA=∠EAP,
∴PE=PA,
∴,
解得t=.
∴满足条件的t存在,此时t=.
此题是四边形综合题,主要考查了矩形的判定和性质,勾股定理,解一元二次方程,用勾股定理建立方程是解本题的关键.
15、(1)300;(2)选择“跑步”这种活动的学生约有800人;(3)
【解析】
(1)用A类的人数除以它所占的百分比得到调查的总人数,再用总人数减去其它项目的人数,求出跳绳的人数,从而补全统计图;
(2)用该校的总人数乘以“跑步”的人数所占的百分比即可;
(3)画树状图展示所有12种等可能的结果数,找出每班抽取的两种形式恰好是“做操”和“跳绳”的结果数,然后利用概率公式求解.
【详解】
(1)根据题意得:120÷40%=300(人),
所以本次共调查了300名学生;
跳绳的有300﹣120﹣60﹣90=30人,补图如下:
故答案为:300;
(2)根据题意得:
2000×40%=800(人),
答:选择“跑步”这种活动的学生约有800人;
(3)画树状图为:
共有12种等可能的结果数,其中每班抽取的两种形式恰好是“做操”和“跳绳”的结果数为2,
所以每班抽取的两种形式恰好是“做操”和“跳绳”的概率==.
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
16、(1)S四边形ABCD;(2)见详解;(1)S四边形ABCD ;(4)AEO,OEB;(5)见详解;(6);(7)
【解析】
(1)先证四边形AEBO, 四边形BFCO, 四边形CGDO, 四边形DHAO都是平行四边形,可得S△ABO=S四边形AEBO, S△BCO=S四边形BFCO, S△CDO=S四边形CGDO, SADO=S四边形DHAO,
即可得出结论;
(2)证明,和,,即可得出结论;
(1)由,可得S四边形MNHE=S△ABD, S四边形MNGF=S△CBD,即可得出结论;
(4)有旋转的定义即可得出结论;
(5)先证,得到,再证,即可得出结论;
(6)应用方法1,过点H作HM⊥EF与点M,再计算即可得出答案;
(7)应用方法1,过点O作OM⊥IK与点M, 再计算即可得出答案.
【详解】
解:方法一:如图,
∵EF∥AC∥HD,EH∥DB∥FG,
∴四边形AEBO, 四边形BFCO, 四边形CGDO, 四边形DHAO都是平行四边形,
∴S△ABO=S四边形AEBO, S△BCO=S四边形BFCO, S△CDO=S四边形CGDO, SADO=S四边形DHAO,
∴.
故答案为.
方法二:如图,连接.
(1),分别为,中点
..
,分别为,中点
.
,
四边形为平行四边形
(2),分别为,中点
..
∴S四边形MNHE=S△ABD, S四边形MNGF=S△CBD,
∴
故答案为.
方法1.(1)有旋转可知;.
故答案为∠AEO;∠OEB.
(2)证明:有旋转知.
.
旋转.
四边形为平行四边形
应用1:如图,应用方法1,过点H作HM⊥EF与点M,
∵,
∴∠AEM=60°, ∠EHM=10°,
∵,,
∴EM=1,EH=6,EF=8,
∴HM==,
∴=EF·HM=24
∴=,
故答案为.
应用2:如图,应用方法1,过点O作OM⊥IK与点M,
,
∵,
∴∠MIO=60°, ∠IOM=10°,
∵,,
∴IM=1,OI=6,IK=8,
∴OM==,
∴=KI·OM=24
∴S四边形ABCD=,
故答案为.
此题主要考查了平行四边形的判定与性质,旋转,三角形的中位线,三角形和平行四边形的面积,选择合适的方法来求面积是解决问题的关键.
17、(1);(2)4
【解析】
(1)由矩形的性质可得∠ABC=90°,AO=CO,BO=DO,由“等积法”可求解;
(2)由“等积法”可求OM=ON=1,通过证明四边形AMON是正方形,即可求解.
【详解】
解:(1)如图,连接,
则由矩形性质有:
又
∴
∴
解得:;
(2)连接,过点作,垂足为点,
又是的角平分线,、,垂足分别为点、,
,
在中,
设,则
解得:
四边形是矩形
又
矩形是正方形
正方形的周长.
本题考查了矩形的性质,正方形的判定,熟练掌握“等积法”是本题的关键
18、(1)y=18-2x,(2),(3)cm2.
【解析】
(1)根据等腰三角形周长公式可求出底边长与腰的函数关系式;
(2)由三角形两边之和大于第三边的关系可知x的取值范围;
(3)当为等边三角形时, AB=BC=AC=6,根据勾股定理求出三角形的高,然后根据三角形的面积公式求解即可.
【详解】
(1)等腰三角形的底边长为y、腰长为x,
依题意和已知,有:
∵y+2x=18,
∴y=18-2x;
(2)∵,
∴18-2x>0,
∴x
相关试卷
这是一份2025届江苏无锡市塔影中学数学九上开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年重庆巴蜀中学数学九上开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年浙江省温州实验中学数学九上开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。