搜索
    上传资料 赚现金
    英语朗读宝

    2025届山东省泰安岱岳区六校联考数学九年级第一学期开学复习检测模拟试题【含答案】

    2025届山东省泰安岱岳区六校联考数学九年级第一学期开学复习检测模拟试题【含答案】第1页
    2025届山东省泰安岱岳区六校联考数学九年级第一学期开学复习检测模拟试题【含答案】第2页
    2025届山东省泰安岱岳区六校联考数学九年级第一学期开学复习检测模拟试题【含答案】第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届山东省泰安岱岳区六校联考数学九年级第一学期开学复习检测模拟试题【含答案】

    展开

    这是一份2025届山东省泰安岱岳区六校联考数学九年级第一学期开学复习检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是( )
    A.﹣4 B.﹣6 C.14 D.6
    2、(4分)如图,已知直线y=x与双曲线y= (k>0)交于A,B两点,且点A的横坐标为4.点C是双曲线上一点,且纵坐标为8,则△AOC的面积为( )
    A.8B.32C.10D.15
    3、(4分)如图,矩形沿折叠,使点落在边上的点处,如果,那么的度数是( )
    A.B.C.D.
    4、(4分)下列各组数据中,能做为直角三角形三边长的是( )。
    A.1、2、3B.3、5、7C.32,42,52D.5、12、13
    5、(4分)直角三角形纸片的两直角边长分别为6,8,现将△ABC如图折叠,使点A与点B重合,则折痕DE的长是( )
    A.B.C.D.
    6、(4分)已知等腰三角形有两条边的长分别是3,7,则这个等腰三角形的周长为( )
    A.17B.13C.17或13D.10
    7、(4分)12名同学参加了学校组织的经典诵读比赛的个人赛(12名同学成绩各不相同),按成绩取前6名进入决赛,如果小明知道自己的成绩后,要判断自己能否进入决赛,他需要知道这12名同学成绩的( )
    A.众数B.方差C.中位数D.平均数
    8、(4分)已知,、,、是一次函数的图象上三点,则,,的大小关系是
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)关于一元二次方程的一个根为,则另一个根为__________.
    10、(4分)如图,矩形的边分别在轴、轴上,点的坐标为。点分别在边上,。沿直线将翻折,点落在点处。则点的坐标为__________。
    11、(4分)已知△ABC中,AB=12,AC=13,BC=15,点D、E、F分别是AB、AC、BC的中点,则△DEF的周长是_____.
    12、(4分)计算:=__.
    13、(4分)某商品经过连续两次降价,售价由原来的25元/件降到16元/件,则平均每次降价的百分率为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)下岗职工王阿姨利用自己的﹣技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元.
    (1)问服装厂有哪几种生产方案?
    (2)按照(1)中方案生产,服装全部售出至少可获得利润多少元?
    (3)在(1)的条件下,服装厂又拿出6套服装捐赠给某社区低保户,其余34套全部售出,这样服装厂可获得利润27元.请直接写出服装厂这40套服装是按哪种方案生产的.
    15、(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:
    (1)慢车的速度为 km/h,快车的速度为 km/h;
    (2)解释图中点C的实际意义并求出点C的坐标;
    (3)求当x为多少时,两车之间的距离为500km.
    16、(8分)学校要对如图所示的一块地ABCD进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米.
    (1)若连接AC,试证明:OABC是直角三角形;
    (2)求这块地的面积.
    17、(10分)如图,在△ABC中,∠ACB=90°,D为AB边上一点,连接CD,E为CD的中点,连接BE并延长至点F,使得EF=EB,连接DF交AC于点G,连接CF,
    (1)求证:四边形DBCF是平行四边形
    (2)若∠A=30°,BC=4,CF=6,求CD的长
    18、(10分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)使分式的值为整数的所有整数的和是________.
    20、(4分)若二次根式有意义,则x的取值范围为__________.
    21、(4分)在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中.不断重复上述过程,下表是实验中的一组统计数据:
    请估计:当n很大时,摸到白球的频率将会接近_____;(精确到0.1)
    22、(4分)若n边形的每个内角都是,则________.
    23、(4分)已知等腰三角形两条边的长为4和9,则它的周长______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在中,;线段是由线段绕点按逆时针方向旋转得到,是由沿方向平移得到,且直线过点.
    (1)求的大小.
    (2)求的长.
    25、(10分)已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.
    26、(12分)解下列方程:
    (1)
    (2)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据题意可得知﹣5≤x≤5,当x=5时,m取最大值,将x=5代入即可得出结论.
    【详解】
    解:已知对于任意一个x,m都取y1,y2中的最小值,
    且求m得最大值,
    因为y1,y2均是递增函数,
    所以在x=5时,m取最大值,
    即m取x=5时,y1,y2中较小的一个,是y1=6.
    故选D.
    本题考察直线图像的综合运用,能够读懂题意确定m是解题关键.
    2、D
    【解析】
    点A的横坐标为4,将x=4代入y= x,得y=2.
    ∴点A的坐标为(4,2).
    ∵点A是直线y=x与双曲线y=(k>0)的交点,
    ∴k=4×2=8,即y=.
    将y=8代入y=中,得x=1.
    ∴点C的坐标为(1,8).
    如图,过点A作x轴的垂线,过点C作y轴的垂线,垂足分别为M,N,且AM,CN的反向延长线交于点D,得长方形DMON.
    易得S长方形DMON=32,S△ONC=4,
    S△CDA=9,S△OAM=4.
    ∴S△AOC=S长方形DMON-S△ONC-S△CDA-S△OAM=32-4-9-4=15.
    3、C
    【解析】
    先由矩形的性质折叠的性质得出∠AFE=∠D=90°,从而得出∠CFE=60°,在利用直角三角形的性质即可.
    【详解】
    ∵四边形ABCD是矩形,
    ∴∠C=∠D=90°,
    由折叠得,∠AFE=∠D=90°,
    ∴∠BFA+∠CFE=90°,
    ∴∠CFE=90°-∠BFA=60°,
    ∵∠C=90°,
    ∴∠CEF=90°-∠CFE=30°,
    故选C.
    此题主要考查了矩形的性质,折叠的性质,直角三角形的性质,解本题的关键是求出∠CFE.
    4、D
    【解析】
    先求出两小边的平方和,再求出大边的平方,看看是否相等即可.
    【详解】
    解:A、12+22≠32,所以以1、2、3为边不能组成直角三角形,故本选项不符合题意;
    B、32+52≠72,所以以3、5、7为边不能组成直角三角形,故本选项不符合题意;
    C、(32)2+(42)2≠(52)2,所以以32、42、52为边不能组成直角三角形,故本选项不符合题意;
    D、52+122=132,所以以5、12、13为边能组成直角三角形,故本选项符合题意;
    故选:D.
    本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.
    5、D
    【解析】
    先通过勾股数得到,再根据折叠的性质得到,,,设,则,,在中利用勾股定理可计算出x,然后在中利用勾股定理即可计算得到DE的长.
    【详解】
    直角三角形纸片的两直角边长分别为6,8,

    又折叠,
    ,,,
    设,则,,
    在中,,即,解得,
    在中,
    故选D.
    本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等也考查了勾股定理.
    6、A
    【解析】
    分3是腰长与底边两种情况讨论求解.
    【详解】
    解:①3是腰长时,三角形的三边分别为7、3、3,
    3+3=6<7,不能组成三角形;
    ②3是底边长时,三角形的三边分别为7、7、3,
    能组成三角形,周长=7+7+3=17,
    综上所述,这个等腰三角形的周长是17,
    故选:A.
    本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.
    7、C
    【解析】
    参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.
    【详解】
    由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较,故应知道中位数的多少,
    故选C.
    本题考查了统计量的选择,包括平均数、中位数、众数、方差等,正确理解和掌握各自的意义是解题的关键.
    8、C
    【解析】
    分别计算自变量为,和1时的函数值,然后比较函数值的大小即可.
    【详解】
    ,、,、是一次函数的图象上三点,
    ,,.


    故选:C.
    本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了一次函数的性质.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    利用根与系数的关系可得出方程的两根之积为-1,结合方程的一个根为-1,可求出方程的另一个根,此题得解.
    【详解】
    ∵a=1,b=m,c=-1,
    ∴x1•x2==-1.
    ∵关于x一元二次方程x2+mx-1=0的一个根为x=-1,
    ∴另一个根为-1÷(-1)=1.
    故答案为:1.
    此题考查根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.
    10、
    【解析】
    由四边形OABC是矩形,BE=BD=1,易得△BED是等腰直角三角形,由折叠的性质,易得∠BEB′=∠BDB′=90°,又由点B的坐标为(3,2),即可求得点B′的坐标.
    【详解】
    ∵四边形OABC是矩形,
    ∴∠B=90°,
    ∵BD=BE=1,
    ∴∠BED=∠BDE=45°,
    ∵沿直线DE将△BDE翻折,点B落在点B′处,
    ∴∠B′ED=∠BED=45°,∠B′DE=∠BDE=45°,B′E=BE=1,B′D=BD=1,
    ∴∠BEB′=∠BDB′=90°,
    ∵点B的坐标为(3,2),
    ∴点B′的坐标为(2,1).
    故答案为:(2,1).
    此题考查翻折变换(折叠问题),坐标与图形性质,解题关键在于得到△BED是等腰直角三角形
    11、20
    【解析】
    首先根据△ABC中,点D、E、F分别是AB、AC、BC的中点,判断出四边形DBFE和四边形DFCE为平行四边形,又根据平行四边形的性质,求出DE、EF、DF的值,进而得出△DEF的周长.
    【详解】
    解:∵△ABC中,点D、E、F分别是AB、AC、BC的中点,
    ∴DE∥BC,DF∥AC,EF∥AB
    ∴四边形DBFE和四边形DFCE为平行四边形,
    又∵AB=12,AC=13,BC=15,
    ∴DB=EF=AB=6
    DF=CE=AC=6.5
    DE=FC=BC=7.5
    ∴△DEF的周长是DE+EF+DF=7.5+6+6.5=20.
    此题主要考查平行四边形的判定,即可得解.
    12、2
    【解析】
    解:.故答案为.
    13、20%
    【解析】
    设平均每次降价的百分率为x,根据该商品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
    【详解】
    解:设平均每次降价的百分率为x,
    依题意,得:25(1﹣x)2=16,
    解得:x1=0.2=20%,x2=1.8(不合题意,舍去).
    故答案为:20%.
    本题主要考查一元二次方程的应用,读懂题意列出方程是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装1套,乙型服装22套;(2)至少可获得利润266元;(3)生产甲型服装16套,乙型服装24套
    【解析】试题分析:
    (1)根据题意设甲型服装x套,则乙型服装为(40-x)套,由已知条件列不等式1536≤34x+42(40-x)≤1552进行解答即求出所求结论;
    (2)根据每种型号的利润和数量都已说明,需求出总利润,根据一次函数的性质即可得 到利润最小值;
    (3)设捐出甲型号m套,则有39(甲-m)+50[乙-(6-m)]-34甲-42乙=27,整理得5甲+8乙+11m=327,又(1)得,甲可以=16、17、1,而只有当甲=16套时,m=5为整数,即可得到服装厂采用的方案.
    试题解析:
    (1)解:设甲型服装x套,则乙型服装为(40﹣x)套,由题意得1536≤34x+42(40﹣x)≤1552,
    解得16≤x≤1,
    ∵x是正整数,
    ∴x=16或17或1.
    有以下生产三种方案:
    生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装1套,乙型服装22套;
    (2)解:设所获利润为y元,由题意有:y=(39﹣34)x+(50﹣42)(40﹣x)=﹣3x+320,
    ∵y随x的增大而减小,
    ∴x=1时,y最小值=266,
    ∴至少可获得利润266元
    (3)解:服装厂采用的方案是:生产甲型服装16套,乙型服装24套.
    15、80 120
    【解析】
    (1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;
    (2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;
    (3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.
    【详解】
    (1)设慢车的速度为akm/h,快车的速度为bkm/h,
    根据题意,得 ,解得 ,
    故答案为80,120;
    (2)图中点C的实际意义是:快车到达乙地;
    ∵快车走完全程所需时间为720÷120=6(h),
    ∴点C的横坐标为6,
    纵坐标为(80+120)×(6﹣3.6)=480,
    即点C(6,480);
    (3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.
    即相遇前:(80+120)x=720﹣500,
    解得x=1.1,
    相遇后:∵点C(6,480),
    ∴慢车行驶20km两车之间的距离为500km,
    ∵慢车行驶20km需要的时间是=0.25(h),
    ∴x=6+0.25=6.25(h),
    故x=1.1 h或6.25 h,两车之间的距离为500km.
    考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.
    16、(1)见解析;(2)这块地的面积是24平方米.
    【解析】
    (1)先根据勾股定理求出AC的长,再根据勾股定理的逆定理解答即可;
    (2)根据三角形的面积公式求解即可.
    【详解】
    (1)∵AD=4,CD=3,AD⊥DC,
    由勾股定理可得:AC= ,
    又∵AC2+BC2=52+122=132=AB2 ,
    ∴△ABC是直角三角形;
    (2)△ABC的面积△ACD的面积==24(m2),
    所以这块地的面积是24平方米.
    本题考查了勾股定理及勾股定理逆定理的应用,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.反之也成立.
    17、(1)见解析(2)
    【解析】
    (1)根据对角线互相平分即可证明;
    (2)由四边形DBCF是平行四边形,可得CF∥AB,DF∥BC,可得∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°,由直角三角形的性质得到FG,CG,GD的长,由勾股定理即可求解.
    【详解】
    (1)∵E为CD的中点,
    ∴CE=DE,又EF=EB
    ∴四边形DBCF是平行四边形
    (2)∵四边形DBCF是平行四边形,∴CF∥AB,DF∥BC,
    ∴∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°,
    在Rt△FCG中,CF=6,
    ∴FG=CF=3,CG=3
    ∵DF=BC=4,
    ∴DG=1,
    ∴在Rt△DCG中,CD=
    此题主要考查平行四边形的判定与性质,解题的关键是熟知含30°的直角三角形的性质.
    18、3.
    【解析】
    试题分析:设降价x元,表示出售价和销售量,根据题意列出方程求解即可.
    试题解析:降价x元,则售价为(60﹣x)元,销售量为(300+30x)件,根据题意得,(60﹣x﹣40)(300+30x)=6080,解得x=3或x=4,又顾客得实惠,故取x=4,应定价为3元,
    答:应将销售单价定位3元.
    考点:3.一元二次方程的应用;3.销售问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    由于分式的值为整数,m也是整数,则可知m-1是4的因数,据此来求解.
    【详解】
    解:∵分式的值为整数,
    ∴是4的因数,
    ∴,,,
    又∵m为整数,,
    ∴m=5,3,2,0,-1,-3,
    则它们的和为:5+3+2+0+(-1)+(-3)=1,
    故答案为:1.
    本题考查了分式的值,要注意分母不能为0,且m为整数.
    20、x≤1
    【解析】
    解:∵二次根式有意义,
    ∴1-x≥0,
    ∴x≤1.
    故答案为:x≤1.
    21、0.60
    【解析】
    计算出平均值即可解答
    【详解】
    解:由表可知,当n很大时,摸到白球的频率将会接近0.60;
    故答案为:0.60;
    此题考查利用频率估计概率,解题关键在于求出平均值
    22、1
    【解析】
    根据内角度数先算出外角度数,然后再根据外角和计算出边数即可.
    【详解】
    解:∵n边形的每个内角都是120°,
    ∴每一个外角都是180°-120°=10°,
    ∵多边形外角和为310°,
    ∴多边形的边数为310÷10=1,
    故答案为:1.
    此题主要考查了多边形的内角和外角,关键是掌握多边形的外角和等于310度.
    23、1
    【解析】
    分9是腰长与底边长两种情况讨论求解即可.
    【详解】
    ①当9是腰长时,三边分别为9、9、4时,能组成三角形,
    周长=9+9+4=1,
    ②当9是底边时,三边分别为9、4、4,
    ∵4+4<9,
    ∴不能组成三角形,
    综上所述,等腰三角形的周长为1.
    故答案为:1.
    本题考查了等腰三角形的两腰相等的性质,难点在于要分情况讨论求解.
    二、解答题(本大题共3个小题,共30分)
    24、 (1) ;(2)DE=1.
    【解析】
    (1)由平移的性质可得∠EAC=90°,由旋转的性质可得∠DAC=110°,即可求∠DAE的大小;
    (2)由“AAS”可证△DAE≌△CAB,可得DE=BC=1.
    【详解】
    解:(1)是由沿方向平移得到,
    所以,,
    所以,,
    又,
    所以,,
    又线段是由线段绕点按逆时针方向旋转得到
    即,
    所以,,
    (2)依题意,得:,
    所以,,
    又,
    所以,,
    所以,.
    本题考查了旋转的性质,平移的性质,全等三角形的判定和性质,熟练运用旋转的性质是本题的关键.
    25、135º.
    【解析】
    在直角△ABC中,由勾股定理求得AC的长,在△ACD中,因为已知三角形的三边的长,可用勾股定理的逆定理判定△ACD是不是直角三角形.
    【详解】
    解:∵∠B=90°,AB=BC=2,
    ∴AC==2,∠BAC=45°,
    又∵CD=3,DA=1,
    ∴AC2+DA2=8+1=9,CD2=9,
    ∴AC2+DA2=CD2,
    ∴△ACD是直角三角形,
    ∴∠CAD=90°,
    ∴∠DAB=45°+90°=135°.
    26、解:(1)(2)
    【解析】
    (1)把左边配成完全平方式,右边化为常数;
    (2)因方程公因式很明显故用因式分解法求解.
    【详解】
    (1)把方程的常数项移得,
    x2−4x=−1,
    方程两边同时加上一次项系数一半的平方得,
    x2−4x+4=−1+4,
    配方得,(x−2)2=3,
    解得:x1=2+,x2=2−
    (2)先提取公因式5x+4得,
    (5x+4)(x−1)=0,
    解得x1=1,x2=−
    题号





    总分
    得分
    摸球的次数n
    100
    200
    300
    500
    800
    1 000
    3 000
    摸到白球的次数m
    65
    124
    178
    302
    481
    620
    1845
    摸到白球的频率
    0.65
    0.62
    0.593
    0.604
    0.601
    0.620
    0.615

    相关试卷

    2024年山东省济南历下区七校联考数学九年级第一学期开学检测模拟试题【含答案】:

    这是一份2024年山东省济南历下区七校联考数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省姜堰区六校联考数学九年级第一学期开学复习检测模拟试题【含答案】:

    这是一份2024年江苏省姜堰区六校联考数学九年级第一学期开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年福州仓山区六校联考九年级数学第一学期开学复习检测模拟试题【含答案】:

    这是一份2024年福州仓山区六校联考九年级数学第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map