搜索
    上传资料 赚现金
    英语朗读宝

    2025届山东省烟台芝罘区六校联考九年级数学第一学期开学考试模拟试题【含答案】

    2025届山东省烟台芝罘区六校联考九年级数学第一学期开学考试模拟试题【含答案】第1页
    2025届山东省烟台芝罘区六校联考九年级数学第一学期开学考试模拟试题【含答案】第2页
    2025届山东省烟台芝罘区六校联考九年级数学第一学期开学考试模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届山东省烟台芝罘区六校联考九年级数学第一学期开学考试模拟试题【含答案】

    展开

    这是一份2025届山东省烟台芝罘区六校联考九年级数学第一学期开学考试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若一个直角三角形的两直角边长分别为3和4,则下列说法不正确的是( )
    A.这个直角三角形的斜边长为5
    B.这个直角三角形的周长为12
    C.这个直角三角形的斜边上的高为
    D.这个直角三角形的面积为12
    2、(4分)已知y-3与x成正比例,且x=2时,y=7,则y与x的函数关系式为( )
    A.y=2x+3B.y=2x-3C.y-3=2x+3D.y=3x-3
    3、(4分)如图,在四边形ABCD中,AD∥BC,∠BCD=90°,将四边形ABCD沿AB方向平移得到四边形A'B'C'D',BC与C'D'相交于点E,若BC=8,CE=3,C'E=2,则阴影部分的面积为( )
    A.12+2B.13C.2+6D.26
    4、(4分)五一小长假,李军与张明相约去宁波旅游,李军从温岭北上沿海高速,同时张明从玉环芦浦上沿海高速,温岭北与玉环芦浦相距44千米,两人约好在三门服务区集合,李军由于离三门近,行驶了1.2小时先到达三门服务站等候张明,张明走了1.4小时到达三门服务站。在整个过程中,两人均保持各自的速度匀速行驶,两人相距的路程y千米与张明行驶的时间x小时的关系如图所示,下列说法错误的是( )
    A.李军的速度是80千米/小时
    B.张明的速度是100千米/小时
    C.玉环芦浦至三门服务站的路程是140千米
    D.温岭北至三门服务站的路程是44千米
    5、(4分)已知实数a在数轴上的位置如图所示,则化简的结果为( )
    A.1B.﹣1C.1﹣2aD.2a﹣1
    6、(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为( )
    A.6B.5C.2D.3
    7、(4分)八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:
    如果选出一名成绩较好且状态稳定的同学去参赛,那么应选( )
    A.赵研B.钱进C.孙兰D.李丁
    8、(4分)在中,若斜边,则边上的中线的长为( )
    A.1B.2C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)▱ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是_____cm.
    10、(4分)如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC=__.
    11、(4分)若一组数据1,3,5,,的众数是3,则这组数据的方差为______.
    12、(4分)如图,在四边形ABCD中,已知AB=CD,再添加一个条件 _______(写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加辅助线)
    13、(4分)如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=,且∠ECF=45°,则CF的长为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.
    (1)求证:四边形OCED是矩形;
    (2)若CE=1,DE=2,ABCD的面积是 .
    15、(8分)已知:如图1,在中,点为对角线的中点,过点的直线分别交边、于点、,过点的直线分别交边、于点、,且.
    (1)求证:四边形为平行四边形;
    (2)如图2,当四边形为矩形时,求证:.

    16、(8分)已知一次函数图像过点P(0,6),且平行于直线y=-2x
    (1)求该一次函数的解析式
    (2)若点A(,a)、B(2,b)在该函数图像上,试判断a、b的大小关系,并说明理由。
    17、(10分) (1)化简:.
    (2)若(1)中的值是不等式“”的一个负整数解,请你在其中选一个你喜欢的数代入(1)中求值.
    18、(10分)如图,的对角线,相交于点,,是上的两点,并且,连接,.
    (1)求证;
    (2)若,连接,,判断四边形的形状,并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是________.
    20、(4分)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为___.
    21、(4分)若点P(-2,2)是正比例函数y=kx(k≠0)图象上的点,则此正比例函数的解析式为______.
    22、(4分)已知中,,,直线经过点,分别过点,作直线的垂线,垂足分别为点,,若,,则线段的长为__________.
    23、(4分)如图,平行四边形ABCD中,∠ABC=60°,E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=1,求AB的长是___________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如图,平面直角坐标系中,,,点C是x轴上一点,点D为OC的中点.
    (1)求证:BD∥AC;
    (2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;
    (3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.
    25、(10分)问题背景:对于形如这样的二次三项式,可以直接用完全平方公式将它分解成,对于二次三项式,就不能直接用完全平方公式分解因式了.此时常采用将加上一项,使它与的和成为一个完全平方式,再减去,整个式子的值不变,于是有:
    =
    ====
    问题解决:
    (1)请你按照上面的方法分解因式:;
    (2)已知一个长方形的面积为,长为,求这个长方形的宽.
    26、(12分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.
    (1)求证:△AEB≌△CFD;
    (2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    先根据勾股定理求出斜边长,再根据三角形面积公式,三角形的性质即可判断.
    【详解】
    解:根据勾股定理可知,直角三角形两直角边长分别为3和4,
    则它的斜边长是 ,
    周长是3+4+5=12,
    斜边长上的高为 ,
    面积是3×4÷2=1.
    故说法不正确的是D选项.
    故选:D.
    本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.但本题也用到了三角形的面积公式,和周长公式.
    2、A
    【解析】
    用待定系数法可求出函数关系式.
    【详解】
    y-1与x成正比例,即:y=kx+1,
    且当x=2时y=7,则得到:k=2,
    则y与x的函数关系式是:y=2x+1.
    故选:A.
    此题考查了待定系数法求一次函数解析式,利用正比例函数的特点以及已知条件求出k的值,写出解析式.
    3、B
    【解析】
    利用平移的性质得到B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,然后根据S阴影部分=S梯形BB′C′E进行计算.
    【详解】
    解:∵四边形ABCD沿AB方向平移得到四边形A'B'C'D',
    ∴B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,
    ∴C′D′⊥BE,
    ∴S阴影部分=S梯形BB′C′E=(8﹣3+8)×2=1.
    故选:B.
    本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
    4、D
    【解析】
    利用函数图像,可知1.2小时张明走了20千米,利用路程÷时间=速度,就可求出张明的速度,从而可求出李军的速度,可对A,B作出判断;再利用路程=速度×时间,就可求出玉环芦浦至三门服务站的路程和温岭北至三门服务站的路程,可对C,D作出判断.
    【详解】
    解:∵1.2小时,他们两人相距20千米,张明走了1.4小时到达三门服务站,即两人相距路程为0千米,
    ∴张明的速度为:20÷(1.4-1.2)=100千米/时,故B正确;
    李军的速度为:100-(44-20)÷1.2=100-20=80千米/时,故A正确;
    ∴ 玉环芦浦至三门服务站的路程为100×1.4=140千米。故C正确;
    ∴温岭北至三门服务站的路程为1.2×80=96千米,故D错误;
    故答案为:D .
    本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.
    5、A
    【解析】
    先由点a在数轴上的位置确定a的取值范围及a-1的符号,再代入原式进行化简即可
    【详解】
    由数轴可知0<a<1,
    所以,=1,选A。
    此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a的大小
    6、C
    【解析】
    由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵BE:ED=1:3,
    ∴BE:OB=1:2,
    ∵AE⊥BD,
    ∴AB=OA,
    ∴OA=AB=OB,
    即△OAB是等边三角形,
    ∴∠ABD=60°,
    ∵AE⊥BD,AE=3,
    ∴AB=,
    故选C.
    此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.
    7、B
    【解析】
    根据平均数和方差的意义解答.
    【详解】
    从平均数看,成绩最好的是钱进、孙兰同学,
    从方差看,钱进方差小,发挥最稳定,
    所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进.
    故选:.
    本题考查了平均数和方差,熟悉它们的意义是解题的关键.
    8、D
    【解析】
    再根据直角三角形斜边上的中线等于斜边的一半可得BD=AC.
    【详解】
    ∵BD是斜边AC边上的中线,
    ∴BD=AC=×=.
    故选D.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    首先根据平行四边形基本性质,AE⊥BD,∠EAD=60°,可得∠ADE=30°,然后再根据直角三角形的性质可得AD=2AE=4cm,再根据四边形ABCD是平行四边形可得AO=CO,BO=DO,BC=AD=4cm,进而求出BO+CO的长,然后可得△OBC的周长.
    【详解】
    ∵AE⊥BD,∠EAD=60°,
    ∴∠ADE=30°,
    ∴AD=2AE=4cm,
    ∵四边形ABCD是平行四边形,
    ∴AO=CO,BO=DO,BC=AD=4cm,
    ∵AC+BD=14cm,
    ∴BO+CO=7cm,
    ∴△OBC的周长为:7+4=1(cm),
    故答案为1
    本题考查平行四边形的基本性质,解题关键在于根据直角三角形的性质得出AD=2AE=4cm
    10、15
    【解析】
    l1∥l2∥l3,
    ,
    所以,所以AC=15.
    11、2
    【解析】
    先根据众数的概念得出x=3,再依据方差的定义计算可得.
    【详解】
    解:∵数据1,3,5,x的众数是3,
    ∴x=3,
    则数据为1、3、3、5,
    ∴这组数据的平均数为:,
    ∴这组数据的方差为:;
    故答案为:2.
    本题主要考查众数和方差,解题的关键是根据众数的概念求出x的值,并熟练掌握方差的定义和计算公式.
    12、AD=BC(答案不唯一)
    【解析】
    可再添加一个条件AD=BC,根据两组对边分别相等的四边形是平行四边形,得出四边形ABCD是平行四边形.
    13、
    【解析】
    如图,延长FD到G,使DG=BE;
    连接CG、EF;
    ∵四边形ABCD为正方形,
    在△BCE与△DCG中,
    ,∴△BCE≌△DCG(SAS),
    ∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,
    在△GCF与△ECF中,
    ,∴△GCF≌△ECF(SAS),∴GF=EF,
    ∵CE=3,CB=6,∴BE=,∴AE=3,
    设AF=x,则DF=6−x,GF=3+(6−x)=9−x,
    ∴EF= ,∴(9−x)²=9+x²,∴x=4,即AF=4,
    ∴GF=5,∴DF=2,
    ∴CF= = ,
    故答案为:.
    点睛:本题考查了全等三角形的判定与性质,勾股定理的知识点,构建三角形,利用方程思想是解答本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)1.
    【解析】
    【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
    (2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
    【详解】(1)∵四边形ABCD是菱形,
    ∴AC⊥BD,
    ∴∠COD=90°.
    ∵CE∥OD,DE∥OC,
    ∴四边形OCED是平行四边形,
    又∠COD=90°,
    ∴平行四边形OCED是矩形;
    (2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
    ∵四边形ABCD是菱形,
    ∴AC=2OC=1,BD=2OD=2,
    ∴菱形ABCD的面积为:AC•BD=×1×2=1,
    故答案为1.
    【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
    15、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)只要证明,即可解决问题;
    (2)由已知可证明,从而可得,,进而可得,由线段加减即可解决问题.
    【详解】
    (1)证明:∵四边形为平行四边形,
    ∴.
    ∴.
    ∵点为对角线的中点,
    ∴.
    ∵,
    ∴(ASA).
    ∴.
    同理
    ∴四边形为平行四边形.
    (2)证明:∵四边形为矩形,
    ∴,且,.
    ∴.
    又∵,.
    ∴(ASA).
    ∴,.
    ∴.
    ∴.
    即.
    本题考查了四边形综合,涉及了矩形的性质、平行四边形的判定和性质、三角形全等的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    16、(1)y=-2x+6 (2)答案见解析
    【解析】
    (1)根据两一次函数图像平行,可得到k的值相等,因此设一次函数解析式为y=-2x+b,再将点P的坐标代入函数解析式就可求出b的值,就可得到函数解析式;
    (2)利用一次函数的性质:k<0时,y随x的增大而减小,比较点A,B的横坐标的大小,就可求得a,b的大小关系
    【详解】
    (1)解:∵ 一次函数图像过点P(0,6),且平行于直线y=-2x,
    ∴设这个一次函数解析式为y=-2x+b
    ∴b=6
    ∴该一次函数解析式为y=-2x+6;
    (2)解:∵一次函数解析式为y=-2x+6,k=-2<0
    ∴y随x的增大而减小;
    ∵ 点A(,a)、B(2,b)在该函数图像上且,
    ∴a>b
    此题主要考查了一次函数的图象和性质,关键是掌握一次函数图象平行时,k值相等.
    17、 (1)x+1;(2)-2.
    【解析】
    (1)先将括号内的进行通分,再把除法转化为乘法,约分化简即可;
    (2)求出不等式的解集,再取一个满足(1)成立的x的负整数值代入求解即可.
    【详解】
    (1)原式=
    =x+1;
    (2)解不等式“”得,
    ∴其负整数解是-3、-2、-1.
    ∴当时,原式=-3+1=-2
    分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.要注意代入求值时,要使原式和化简的每一步都有意义.
    18、(1)详见解析;(2)四边形BEDF是矩形,理由详见解析.
    【解析】
    (1)已知四边形ABCD是平行四边形,根据平行四边形的性质可得OA=OC,OB=OD,由AE=CF即可得OE=OF,利用SAS证明△BOE≌△DOF, 根据全等三角形的性质即可得BE=DF;(2)四边形BEDF是矩形.由(1)得OD=OB,OE=OF, 根据对角线互相平方的四边形为平行四边形可得四边形BEDF是平行四边形, 再由BD=EF,根据对角线相等的平行四边形为矩形即可判定四边形EBFD是矩形.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,
    ∵AE=CF,
    ∴OE=OF,
    在△BOE和△DOF中,

    ∴△BOE≌△DOF(SAS),
    ∴BE=DF;
    (2)四边形BEDF是矩形.理由如下:
    如图所示:
    ∵OD=OB,OE=OF,
    ∴四边形BEDF是平行四边形,
    ∵BD=EF,
    ∴四边形EBFD是矩形.
    本题考查了平行四边形的性质及判定、矩形的判定,熟练运用相关的性质及判定定理是解决问题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    设B的坐标为(2a,2b),E点坐标为(x,2b),D点坐标为(2a,y),因为D、E、M在反比例函数图象上,则ab=k,2bx=k, 2ay=k, 根据四边形ODBE的面积列式,求得k值,再由2bx×2ay=4abxy=k2=9, 求得xy的值,然后根据所求的结果求出△BED的面积,则△ODE的面积就是四边形ODBE的面积和△BED的面积之差.
    【详解】
    解:设B的坐标为(2a,2b), 则M点坐标为(a,b),
    ∵M在AC上,
    ∴ab=k(k>0),
    设E点坐标为(x,2b),D点坐标为(2a,y),
    则2bx=k, 2ay=k,
    ∴S四边形ODBE=2a×2b-×(2bx+2ay)=9,
    即4k- (k+k)=9,
    解得k=3,
    ∵2bx×2ay=4abxy=k2=9,
    ∴4abxy=9,
    解得:xy=,
    则S△BED=BE×BD=
    ,
    ∴ S△ODE = S四边形ODBE -S△BED=9-
    本题主要考查反比函数与几何综合,解题关键在于利用面积建立等式求出k.
    20、 (﹣,2)
    【解析】
    根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.
    【详解】
    ∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,
    ∴点A的坐标为(3,0),点B的坐标为(0,4).
    过点C作CE⊥y轴于点E,如图所示.
    ∵BC=OC=OA,
    ∴OC=3,OE=2,
    ∴CE==,
    ∴点C的坐标为(﹣,2).
    故答案为:(﹣,2).
    本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.
    21、y=-x
    【解析】
    直接把点(-2,2)代入正比例函数y=kx(k≠0),求出k的数值即可.
    【详解】
    把点(-2,2)代入y=kx得
    2=-2k,
    k=-1,
    所以正比例函数解析式为y=-x.
    故答案为:y=-x.
    本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.
    22、或
    【解析】
    分两种情况:①如图1所示:先证出∠1=∠3,由勾股定理求出CE,再证明△BCF≌△CAE,得出对应边相等CF=AE=3,得出EF=CE-CF即可;
    ②如图2所示:先证出∠1=∠3,由勾股定理求出CE,再证明△BCF≌△CAE,得出对应边相等CF=AE=3,得出EF=CE+CF即可.
    【详解】
    分两种情况:①如图1所示:
    ∵∠ACB=90°,
    ∴∠1+∠2=90°,
    ∵BF⊥CE,
    ∴∠BFC=90°,
    ∴∠2+∠3=90°,
    ∴∠1=∠3,
    ∵AE⊥CE,
    ∴∠AEC=90°,
    ∴CE=,
    在△BCF和△CAE中,

    ∴△BCF≌△CAE(AAS),
    ∴CF=AE=3,
    ∴EF=CE-CF=4-3=1;
    ②如图2所示:
    ∵∠ACB=90°,
    ∴∠1+∠2=90°,
    ∵BF⊥CF,
    ∴∠BFC=90°,
    ∴∠2+∠3=90°,
    ∴∠1=∠3,
    ∵AE⊥CF,
    ∴∠AEC=90°,
    ∴CE=,
    在△BCF和△CAE中,

    ∴△BCF≌△CAE(AAS),
    ∴CF=AE=3,
    ∴EF=CE+CF=4+3=1;
    综上所述:线段EF的长为:1或1.
    故答案为:1或1.
    本题考查了全等三角形的判定与性质、勾股定理、互余两角的关系;本题有一定难度,需要进行分类讨论,作出图形才能求解.
    23、1
    【解析】
    根据已知条件易证四边形ABDE是平行四边形,可得AB=DE=CD,即D是CE的中点,在Rt△CEF中利用30°角直角三角形的性质可求得CE的长,继而求得AB的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC,AB=CD,
    ∵AE∥BD,
    ∴四边形ABDE是平行四边形,
    ∴AB=DE=CD,
    即D为CE中点,
    ∴AB=CE,
    ∵EF⊥BC,
    ∴∠EFC=90°,
    ∵AB∥CD,
    ∴∠DCF=∠ABC=60°,
    ∴∠CEF=30°,
    ∵CF=1,
    ∴CE=2,
    ∴AB=1.
    故答案为1
    本题考查了平行四边形的判定与性质,正确证得D是CE的中点是关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)BD∥AC;(2);(3)
    【解析】
    (1)由A与B的坐标求出OA与OB的长,进而得到B为OA的中点,而D为OC的中点,利用中位线定理即可得证;
    (2)如图1,作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;
    (3)如图2,当四边形ABDE为平行四边形时,AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE,再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标,设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出AC解析式.
    【详解】
    (1),,
    ,,点B为线段OA的中点,
    点D为OC的中点,即BD为的中位线,

    (2)如图1,作于点F,取AB的中点G,则,
    ,BD与AC的距离等于2,

    在中,,,点G为AB的中点,

    是等边三角形,.

    设,则,
    根据勾股定理得:,


    点C在x轴的正半轴上,
    点C的坐标为;
    (3)如图2,当四边形ABDE为平行四边形时,,

    点D为OC的中点,




    点C在x轴的正半轴上,
    点C的坐标为,
    设直线AC的解析式为.
    将,得

    解得:.
    直线AC的解析式为.
    此题属于一次函数综合题,涉及的知识有:三角形中位线定理,坐标与图形性质,待定系数法求一次函数解析式,平行四边形的性质,等边三角形的性质,勾股定理,含30度直角三角形的性质,熟练掌握定理及性质是解本题的关键.
    25、(1); (2)长为时这个长方形的宽为
    【解析】
    按照原题解题方法,进而借助完全平方公式以及平方差公式分解因式得出即可.
    【详解】
    (1)
    =
    =
    =
    =
    =
    (2) ∵
    =
    =
    ∴长为时这个长方形的宽为.
    26、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)利用平行四边形的性质结合全等三角形的判定方法(AAS),得出即可;
    (2)利用全等三角形的性质得出AE=CF,进而求出四边形AFCE是平行四边形.,再利用菱形的判定方法得出答案.
    【详解】
    (1)如图1.
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC,AB="DC."
    ∴∠1=∠2.
    ∵AE∥CF,
    ∴∠3=∠4.
    在△AEB和△CFD中,

    ∴△AEB≌△CFD;
    (2)如图2.
    ∵△AEB≌△CFD,
    ∴AE=CF.
    ∵AE∥CF,
    ∴四边形AFCE是平行四边形.
    ∵∠5=∠4,∠3=∠4,
    ∴∠5=∠3.
    ∴AF=AE.
    ∴四边形AFCE是菱形.
    题号





    总分
    得分
    批阅人




    85
    93
    93
    86
    S2
    3
    3
    3.5
    3.7

    相关试卷

    2023-2024学年山东省烟台芝罘区六校联考九上数学期末联考试题含答案:

    这是一份2023-2024学年山东省烟台芝罘区六校联考九上数学期末联考试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是,函数y=kx﹣k等内容,欢迎下载使用。

    2023-2024学年山东省烟台市芝罘区数学九上期末联考试题含答案:

    这是一份2023-2024学年山东省烟台市芝罘区数学九上期末联考试题含答案,共7页。试卷主要包含了抛物线y=等内容,欢迎下载使用。

    山东省烟台芝罘区六校联考2023-2024学年八年级数学第一学期期末学业水平测试模拟试题含答案:

    这是一份山东省烟台芝罘区六校联考2023-2024学年八年级数学第一学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列篆字中,轴对称图形的个数有,某一次函数的图象经过点,下列各式是分式的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map