2025届山东省枣庄市薛城区数学九年级第一学期开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)平行四边形、矩形、菱形、正方形都具有的是( )
A.对角线互相平分
B.对角线互相垂直
C.对角线相等
D.对角线互相垂直且相等
2、(4分)如图, △ABC 的周长为 17,点 D, E 在边 BC 上,∠ABC 的平分线垂直于 AE ,垂足为点 N , ∠ACB 的平分线垂直于 AD ,垂足为点 M ,若 BC 6 ,则 MN 的长度为( )
A.B.2C.D.3
3、(4分)如图,四边形ABCD是平行四边形,要使它成为矩形,那么需要添加的条件是( )
A.B.C.D.
4、(4分)若,则下列不等式不成立的是( )
A.B.C.D.
5、(4分)下列曲线中不能表示y与x的函数的是( )
A.B.C.D.
6、(4分)一次函数的图象如图所示,当时,则的取值范围是( )
A.B.C.D.
7、(4分)如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为( )
A.30°B.35°C.40°D.45°
8、(4分)关于函数y=﹣x﹣2的图象,有如下说法:
①图象过点(0,﹣2)
②图象与x轴的交点是(﹣2,0)
③由图象可知y随x的增大而增大
④图象不经过第一象限
⑤图象是与y=﹣x+2平行的直线,
其中正确说法有( )
A.5个 B.4个 C.3个 D.2个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=10,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为20,则平移距离为___________.
10、(4分)2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是 .
11、(4分)如图,将边长为的正方形折叠,使点落在边的中点处,点落在处,折痕为,则线段的长为____.
12、(4分)如图,正方形的边长为5,,连结,则线段的长为________.
13、(4分)甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数相同,射击成绩的方差分别为S甲2=5,S乙2=3.5,则射击成绩比较稳定的是_____(填“甲”或“乙“).
三、解答题(本大题共5个小题,共48分)
14、(12分)如图:反比例函数的图象与一次函数的图象交于、两点,其中点坐标为.
(1)求反比例函数与一次函数的表达式;
(2)观察图象,直接写出当时,自变量的取值范围;
(3)一次函数的图象与轴交于点,点是反比例函数图象上的一个动点,若,求此时点的坐标.
15、(8分)学校准备假期组织学生去北京研学,现有甲、乙两家旅行社表示对学生研学团队优惠.设参加研学的学生有x人,甲、乙两家旅行社实际收费分别为元,元,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:
(1)根据图象直接写出当参加研学的学生人数为多少时,两家旅行社收费相同?
(2)当参加老师的人数为多少人时,选择甲旅行社合算?
(3)如果共有50人参加时,通过计算说明选择哪家旅行社合算?
16、(8分)解分式方程或化简求值
(1) ;
(2)先化简,再求值:,其中.
17、(10分)如图平面直角坐标系中,点,在轴上,,点在轴上方,,,线段交轴于点,,连接,平分,过点作交于.
(1)点的坐标为 .
(2)将沿线段向右平移得,当点与重合时停止运动,记与的重叠部分面积为,点为线段上一动点,当时,求的最小值;
(3)当移动到点与重合时,将绕点旋转一周,旋转过程中,直线分别与直线、直线交于点、点,作点关于直线的对称点,连接、、.当为直角三角形时,直接写出线段的长.
18、(10分)如图,一次函数的图象与反比例函数的图象交于点和点.
(1)求,的值;
(2)根据图象判断,当不等式成立时,的取值范围是什么?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD中,点O为对角线AC的三等分点且AO=2OC,连接OB,OD,OB=OC=OD,已知AC=3,那么菱形的边长为_____.
20、(4分)写出一个经过点,且y随x的增大而减小的一次函数的关系式:______.
21、(4分)如图,梯形ABCD中,AD∥BC,AD=6 BC=14, P、Q分别为BD、AC的中点,则PQ= ____.
22、(4分)函数y=36x-10的图象经过第______象限.
23、(4分)已知A(﹣2,2),B(2,3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为_____
二、解答题(本大题共3个小题,共30分)
24、(8分)因式分解:am2﹣6ma+9a.
25、(10分)《九章算术》卷九“勾股”中记载:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问霞长几何.
注释:今有正方形水池边长1丈,芦苇生长在中央,长出水面1尺.将芦苇向池岸牵引,恰好与水岸齐,问芦苇的长度(一丈等于10尺).解决下列问题:
(1)示意图中,线段的长为______尺,线段的长为______尺;
(2)求芦苇的长度.
26、(12分)计算:(1) (2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题分析:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.
故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.
故选A.
考点:特殊四边形的性质
2、C
【解析】
证明,得到,即是等腰三角形,同理是等腰三角形,根据题意求出,根据三角形中位线定理计算即可.
【详解】
平分,,
,,
在和中,
,
,
,
是等腰三角形,
同理是等腰三角形,
点是中点,点是中点(三线合一),
是的中位线,
,
,
.
故选.
本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
3、D
【解析】
可根据对角线相等的平行四边形是矩形证明四边形ABCD是矩形.
【详解】
解:A、,当ABCD是平行四边形时也成立,故不合符题意;
B、,当ABCD是平行四边形时也成立,故不合符题意;
C、,当ABCD是菱形时也成立,故不合符题意;
D、,对角线相等的平行四边形是矩形,符合题意;
故选:D.
此题主要考查了矩形的判定,关键是矩形的判定:
①矩形的定义:有一个角是直角的平行四边形是矩形;
②有三个角是直角的四边形是矩形;
③对角线相等的平行四边形是矩形.
4、C
【解析】
直接根据不等式的性质进行分析判断即可得到答案.
【详解】
A.,则a是负数,可以看成是5<6两边同时加上a,故A选项成立,不符合题意;
B.是不等式5<6两边同时减去a,不等号不变,故B选项成立,不符合题意;
C.5<6两边同时乘以负数a,不等号的方向应改变,应为:,故选项C不成立,符合题意;
D.是不等式5<6两边同时除以a,不等号改变,故D选项成立,不符合题意.
故选C.
本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;
不等式两边同乘以(或除以)同一个负数,不等号的方向改变.
5、C
【解析】
函数是在一个变化过程中有两个变量x,y,一个x只能对应唯一一个y.
【详解】
当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.
选项C中的图形中对于一个自变量的值,图象就对应两个点,即y有两个值与x的值对应,因而不是函数关系.
函数图像的判断题,只需过每个自变量在x轴对应的点,作垂直x轴的直线观察与图像的交点,有且只有一个交点则为函数图象。
6、C
【解析】
函数经过点(0,3)和(1,-3),根据一次函数是直线,且这个函数y随x的增大而减小,即可确定.
【详解】
解:函数经过点(0,3)和(1,-3),则当-3<y<3时,x的取值范围是:0<x<1.
故选:C.
认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.
7、B
【解析】
由旋转性质等到△ABD为等腰三角形,利用内角和180°即可解题.
【详解】
解:由旋转可知,∠BAD=110°,AB=AD
∴∠B=∠ADB,
∠B=(180°-110°)2=35°,
故选B.
本题考查了等腰三角形的性质,三角形的内角和,属于简单题,熟悉旋转的性质是解题关键.
8、B
【解析】
试题分析:根据一次函数的性质和图象上点的坐标特征解答.
解:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;
②当y=0时,y=﹣x﹣2中,x=﹣2,故图象过(﹣2,0),正确;
③因为k=﹣1<0,所以y随x增大而减小,错误;
④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;
⑤因为y=﹣x﹣2与y=﹣x的k值(斜率)相同,故两图象平行,正确.
故选B.
考点:一次函数的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先根据含30度的直角三角形三边的关系得到AC,再根据平移的性质得AD=BE,ADBE,于是可判断四边形ABED为平行四边形,则根据平行四边形的面积公式得到BE的方程,则可计算出BE=1,即得平移距离.
【详解】
解:在Rt△ABC中,∵∠ABC=30°,
∴AC=AB=5,
∵△ABC沿CB向右平移得到△DEF,
∴AD=BE,ADBE,
∴四边形ABED为平行四边形,
∵四边形ABED的面积等于20,
∴AC•BE=20,即5BE=20,
∴BE=1,即平移距离等于1.
故答案为:1.
本题考查了含30°角的直角三角形的性质,平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平行四边形的判定与性质.
10、.
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好2名女生得到电影票的情况,再利用概率公式求解即可求得答案.
解:画树状图得:
∵共有12种等可能的结果,恰好2名女生得到电影票的有2种情况,
∴恰好2名女生得到电影票的概率是:=.
故答案为:.
11、
【解析】
根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4,根据勾股定理就可以列出方程,从而解出CN的长.
【详解】
设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,
而EC=BC=4,在Rt△ECN中,由勾股定理可知,即
整理得16x=48,所以x=1.
故答案为:1.
本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.
12、
【解析】
延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2、HE=CH-CE=2、∠HEG=90°,由勾股定理可得GH的长.
【详解】
解:如图,延长BG交CH于点E,
∵正方形的边长为5,,
∴AG2+BG2=AB2,
∴∠AGB=90°,
在△ABG和△CDH中,
∴△ABG≌△CDH(SSS),
∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,
∴△ABG≌△BCE(ASA),
∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,
∴GE=BE-BG=4-3=1,
同理可得HE=1,
在RT△GHE中,
故答案为:
本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.
13、乙.
【解析】
根据方差反应了数据的波动情况,即可完成作答。
【详解】
解:因为S甲2=5>S乙2=3.5,即乙比较稳定,故答案为:乙。
本题考查了方差在数据统计中的作用,即方差是反映数据波动大小的量。
三、解答题(本大题共5个小题,共48分)
14、(1),;(2)或;(3)(12,)或(-12,)
【解析】
(1)把A点坐标代入中求出k得到反比例函数解析式,把A点坐标代入中求出b得到一次函数解析式;
(2)由函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可;
(3)设P(x,),先利用一次解析式解析式确定C(0,1),再根据三角形面积公式得到,然后解绝对值方程得到x的值,从而得到P点坐标.
【详解】
解:(1)把A(1,2)代入得k=2,
∴反比例函数解析式为,
把A(1,2)代入得,解得,
∴一次函数解析式为;
(2)由函数图象可得:当y1<y2时,-2<x<0或x>1;
(3)设P(x,),
当x=0时,,
∴C(0,1),
∵S△OCP=6,
∴,解得,
∴P(12,)或(-12,).
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
15、(1)30人;(2)当有30人以下时,y
(1)当两函数图象相交时,两家旅行社收费相同,由图象即可得出答案.
(2)由图象比较收费y、y,即可得出答案.
(3)结合图形进行解答,当有50人时,比较收费y、y,即可得出答案.
【详解】
(1)当两函数图象相交时,两家旅行社收费相同,由图象知为30人;
(2)由图象知:当有30人以下时,y
∴ 当一共有50人参加时,应选择乙旅行社合算.;
此题考查一次函数与二元一次方程(组),解题关键在于结合函数图象进行解答.
16、;.
【解析】
(1)将方程右边的式子提取-1变形后,方程两边同时乘以2x-1,去分母后求出x的值,将x的代入最简公分母检验,即可得到原分式方程的解;
(2)将原式被除数括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,把x的值代入化简后的式子中计算,即可得到原式的值.
【详解】
(1)
x=2(2x-1)+3
x-4x=3-2
-3x=1
(2)
=
=
=
把代入原式=.
考查了分式的化简求值,以及分式方程的解法,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.
17、(1)C(3,3);(3)最小值为3+3;(3)D3H的值为3-3或3+3或1-1或1+1.
【解析】
(1)想办法求出A,D,B的坐标,求出直线AC,BC的解析式,构建方程组即可解决问题.
(3)如图3中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面积公式求出点D坐标,再证明PH=PB,把问题转化为垂线段最短即可解决问题.
(3)在旋转过程中,符号条件的△GD3H有8种情形,分别画出图形一一求解即可.
【详解】
(1)如图1中,
在Rt△AOD中,∵∠AOD=93°,∠OAD=33°,OD=3,
∴OA=OD=6,∠ADO=63°,
∴∠ODC=133°,
∵BD平分∠ODC,
∴∠ODB=∠ODC=63°,
∴∠DBO=∠DAO=33°,
∴DA=DB=1,OA=OB=6,
∴A(-6,3),D(3,3),B(6,3),
∴直线AC的解析式为y=x+3,
∵AC⊥BC,
∴直线BC的解析式为y=-x+6,
由 ,解得,
∴C(3,3).
(3)如图3中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.
∵∠FD′G=∠D′GF=63°,
∴△D′FG是等边三角形,
∵S△D′FG= ,
∴D′G= ,
∴DD′=GD′=3,
∴D′(3,3),
∵C(3,3),
∴CD′==3,
在Rt△PHB中,∵∠PHB=93°,∠PBH=33°,
∴PH=PB,
∴CD'+D'P+PB=3+D′P+PH≤3+D′O′=3+3,
∴CD'+D'P+PB的最小值为3+3.
(3)如图3-1中,当D3H⊥GH时,连接ED3.
∵ED=ED3,EG=EG.DG=D3G,
∴△EDG≌△ED3G(SSS),
∴∠EDG=∠ED3G=33°,∠DEG=∠D3EG,
∵∠DEB=133°,∠A′EO′=63°,
∴∠DEG+∠BEO′=63°,
∵∠D3EG+∠D3EO′=63°,
∴∠D3EO′=∠BEO′,
∵ED3=EB,E=EH,
∴△EO′D3≌△EO′B(SAS),
∴∠ED3H=∠EBH=33°,HD3=HB,
∴∠CD3H=63°,
∵∠D3HG=93°,
∴∠D3GH=33°,设HD3=BH=x,则DG=GD3=3x,GH=x,
∵DB=1,
∴3x+x+x=1,
∴x=3-3.
如图3-3中,当∠D3GH=93°时,同法可证∠D3HG=33°,易证四边形DED3H是等腰梯形,
∵DE=ED3=DH=1,可得D3H=1+3×1×cs33°=1+1.
如图3-3中,当D3H⊥GH时,同法可证:∠D3GH=33°,
在△EHD3中,由∠D3HE=15°,∠HD3E=33°,ED3=1,可得D3H=1× ,
如图3-1中,当DG⊥GH时,同法可得∠D3HG=33°,
设DG=GD3=x,则HD3=BH=3x,GH=x,
∴3x+x=1,
∴x=3-3,
∴D3H=3x=1-1.
如图3-5中,当D3H⊥GH时,同法可得D3H=3-3.
如图3-6中,当DGG⊥GH时,同法可得D3H=1+1.
如图3-7中,如图当D3H⊥HG时,同法可得D3H=3+3.
如图3-8中,当D3G⊥GH时,同法可得HD3=1-1.
综上所述,满足条件的D3H的值为3-3或3+3或1-1或1+1.
此题考查几何变换综合题,解直角三角形,旋转变换,一次函数的应用,等边三角形的判定和性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会构建一次函数确定交点坐标,学会用分类讨论的思想思考问题.
18、(1), ;(2)或.
【解析】
(1)利用待定系数法即可解决问题;
(2)观察图象写出反比例函数图象在一次函数的图象上方的x的取值范围即可.
【详解】
解:(1)把A(1,1)代入中,得到m=1,
∴反比例函数的解析式为y=,
把B(n,1)代入y=中,得到n=1;
(2)∵A(1,1),B(1,1),
观察图象可知:不等式成立时,x的取值范围是0<x≤1或x≥1.
本题考查一次函数与反比例函数的交点问题,解题的关键是灵活应用待定系数法确定函数解析式,学会利用图象法解决取值范围问题,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
如图,连接BD交AC于E,由四边形ABCD是菱形,推出AC⊥BD,AE=EC,在Rt△EOD中,利用勾股定理求出DE,在Rt△ADE中利用勾股定理求出AD即可.
【详解】
如图,连接BD交AC于E.
∵四边形ABCD是菱形,
∴AC⊥BD,AE=EC,
∵OA=2OC,AC=3,
∴CO=DO=2EO=1,AE=,
∴EO=,DE=EB=,
∴AD=.
故答案为.
本题考查菱形的性质、勾股定理等知识,解题的关键是灵活应用勾股定理解决问题.
20、y=-x-1
【解析】
可设,由增减性可取,再把点的坐标代入可求得答案.
【详解】
设一次函数解析式为,
随的增大而减小,
,故可取,
解析式为,
函数图象过点,
,解得,
.
故答案为:(注:答案不唯一,只需满足,且经过的一次函数即可).
本题有要考查一次函数的性质,掌握“在中,当时随的增大而增大,当时随的增大而减小”是解题的关键.
21、1.
【解析】
首先连接DQ,并延长交BC于点E,易证得△ADQ≌△CEQ(ASA),即可求得DQ=EQ,CE=AD=6,继而可得PQ是△DBE的中位线,则可求得答案.
【详解】
解:连接DQ,并延长交BC于点E,
∵AD∥BC,
∴∠DAQ=∠ECQ,
在△ADQ和△CEQ中,
,
∴△ADQ≌△CEQ(ASA),
∴DQ=EQ,CE=AD=6,
∴BE=BC-CE=11-6=8,
∵BP=DP,
∴PQ=BE=1.
故答案为:1.
本题考查梯形的性质、全等三角形的判定与性质以及三角形的中位线的性质.注意掌握辅助线的作法,注意掌握数形结合思想的应用.
22、【解析】
根据y=kx+b(k≠0,且k,b为常数),当k>0,b<0时,函数图象过一、三、四象限.
【详解】
解:因为函数中,
,,
所以函数图象过一、三、四象限,
故答案为:一、三、四.
此题主要考查了一次函数的性质,同学们应熟练掌握根据函数式判断出函数图象的位置,这是考查重点内容之一.
23、(-0.4,0)
【解析】
点A(-2,2)关于x轴对称的点A'(-2,-2),求得直线A'B的解析式,令y=0可求点P的横坐标.
【详解】
解:点A(-2,2)关于x轴对称的点A'(-2,-2),
设直线A'B的解析式为y=kx+b,
把A'(-2,-2),B(2,3)代入,可得
,解得 ,
∴直线A'B的解析式为y=x+,
令y=0,则0=x+,
解得x=-0.4,
∴点P的坐标为(-0.4,0),
故答案为:(-0.4,0).
本题综合考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间线段最短等知识点.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.
二、解答题(本大题共3个小题,共30分)
24、a(m﹣3)1.
【解析】
先提取公因式,再利用完全平方公式分解因式即可解答
【详解】
原式=a(m1﹣6m+9)
=a(m﹣3)1.
此题考查提公因式法和公式法的综合运用,解题关键在于熟练掌握运算法则
25、(1)5,1;(2)芦苇的长度为13尺.
【解析】
(1)直接利用题意结合图形得出各线段长;
(2)利用勾股定理得出AG的长进而得出答案.
【详解】
(1)线段AF的长为5尺,线段EF的长为1尺;
故答案为:5,1;
(2)设芦苇的长度x尺,
则图中AG=x,GF=x−1,AF=5,
在Rt△AGF中,∠AFC=90∘,
由勾股定理得 AF+FG=AG.
所以 5+(x−1) =x,
解得 x=13,
答:芦苇的长度为13尺.
此题考查勾股定理,解题关键在于得出AG的长.
26、(1)14;(2)
【解析】
(1)先根据二次根式的性质把各个根式化成最简二次根式,再合并同类二次根式即可.
(2)根据多项式乘以多项式的运算法则计算即可.
【详解】
解:(1)原式=
=
=14
(2)原式=
=
本题考查了二次根式的性质和多项式与多项式相乘,解题的关键是准确的化简二次根式,以及掌握乘法运算法则.
题号
一
二
三
四
五
总分
得分
2024年山东省枣庄市薛城区舜耕中学九上数学开学检测模拟试题【含答案】: 这是一份2024年山东省枣庄市薛城区舜耕中学九上数学开学检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省枣庄市市中学区数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年山东省枣庄市市中学区数学九年级第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省枣庄市薛城区临城2023-2024学年数学九上期末质量检测试题含答案: 这是一份山东省枣庄市薛城区临城2023-2024学年数学九上期末质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,抛物线的顶点坐标是等内容,欢迎下载使用。