2025届山西省(临汾地区)九年级数学第一学期开学经典试题【含答案】
展开
这是一份2025届山西省(临汾地区)九年级数学第一学期开学经典试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列电视台的台标,是中心对称图形的是( )
A.B.C.D.
2、(4分)要使分式的值为零,则的取值应满足( )
A.B.C.D.
3、(4分)以下列长度(单位:cm)为边长的三角形是直角三角形的是( )
A.3,4,5B.1,2,3C.5,7,9D.6,10,12
4、(4分)已知A(x1,y1),B(x2,y2)是一次函数y=(2a﹣1)x﹣3图象上的两点,当x1<x2时,有y1>y2,则a的取值范围是( )
A.a<2B.a>C.a>2D.a<
5、(4分)如图,一棵高为16m的大树被台风刮断.若树在地面6m处折断,则树顶端落在离树底部( )处.
A.5mB.7mC.7.5mD.8m
6、(4分)一次函数y=﹣3x+5的图象不经过的象限是第( )象限
A.一 B.二 C.三 D.四
7、(4分)以下各组数中,能作为直角三角形的三边长的是
A.6,6,7B.6,7,8C.6,8,10D.6,8,9
8、(4分)下列函数解析式中不是一次函数的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在四边形ABCD中,AD∥BC,且AD=12cm.点P从点A出发,以3cm/s的速度在射线AD上运动;同时,点Q从点C出发,以1cm/s的速度在射线CB上运动.运动时间为t,当t=______秒(s)时,点P、Q、C、D构成平行四边形.
10、(4分)平行四边形ABCD中,若,=_____.
11、(4分)若,则_________ .
12、(4分)已知关于x的方程=1的解是负值,则a的取值范围是______.
13、(4分)如图,菱形ABCD的两条对角线长分别为6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点则PM+PN的最小值是_
三、解答题(本大题共5个小题,共48分)
14、(12分)平面直角坐标系中,直线l1:与x轴交于点A,与y轴交于点B,直线l2:与x轴交于点C,与直线l1交于点P.
(1)当k=1时,求点P的坐标;
(2)如图1,点D为PA的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;
(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.
15、(8分)为了倡导“全民阅读”,某校为调査了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成统计图表如下:
根据以上信息,解答下列问题
(1)共抽样调查了 名学生,a= ;
(2)在扇形统计图中,“D”对应扇形的圆心角为 ;
(3)若该校有2000名学生,请估计全校学生中家庭藏书超过60本的人数.
16、(8分)某中学八年级组织了一次“汉字听写比赛”,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中A等级得分为100分,B等级得分为85分,C等级得分为75分,D等级得分为60分,语文教研组将八年级一班和二班的成绩整理并绘制成如下的统计图,请根损换供的信息解答下列问题.
(1)把一班比赛成统计图补充完整;
(2)填表:
表格中:a=______,b=______,c=_______.
(3)请从以下给出的两个方面对这次比赛成绩的结果进行分析:
①从平均数、众数方面来比较一班和二班的成绩;
②从B级以上(包括B级)的人数方面来比较-班和二班的成绩.
17、(10分)解不等式组并求出其整数解
18、(10分)如图,在中,,点在上,若,平分.
(1)求的长;
(2)若是中点,求线段的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形中,的平分线交于点,连接,若,,则_____.
20、(4分)直线y=x﹣与y轴的交点是_____.
21、(4分)设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=_____.
22、(4分)如图,一次函数与的图的交点坐标为(2,3),则关于的不等式的解集为_____.
23、(4分)小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程与时间的图像,则小明回家的速度是每分钟步行________m.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(-)0+(-4)-2-|-|
25、(10分)反比例函数的图象经过、、两点,试比较m、n大小.
26、(12分)如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.
求证:DF∥AC.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D符合。故选D。
2、B
【解析】
分式的值为零时,分子且分母,由此求得应满足的条件.
【详解】
由题意得,,
∴.
故选:B.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.
3、A
【解析】
利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.
【详解】
A. 因为3+4=5,所以三条线段能组成直角三角形;
B. 因为1+2≠3,所以三条线段不能组成直角三角形;
C. 因为5+7≠9,所以三条线段不能组成直角三角形;
D. 因为6+10≠12,所以三条线段不能组成直角三角形;
故选:A.
此题考查勾股定理的逆定理,难度不大
4、D
【解析】
根据一次函数的图像即可求解.
【详解】
解:∵当x1<x2时,有y1>y2
∴y随x的增大而减小
即2a﹣1<0
∴a<
故选:D.
此题主要考查一次函数的性质,解题的关键是熟知一次函数的图像.
5、D
【解析】
首先设树顶端落在离树底部xm,根据勾股定理可得62+x2=(16-6)2,再解即可.
【详解】
设树顶端落在离树底部xm,由题意得:
62+x2=(16-6)2,
解得:x1=8,x2=-8(不符合题意,舍去).
所以,树顶端落在离树底部8m处.
故选:D.
此题主要考查了勾股定理的应用,关键是正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方.
6、C
【解析】
由k<0,可得一次函数经过二、四象限,再由b>0,一次函数经过第一象限,即可得到直线不经过的象限.
【详解】
∵直线y=﹣3x+5经过第一、二、四象限,
∴不经过第三象限,
故选C.
本题考查了一次函数图象与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.
7、C
【解析】
分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.
【详解】
解:A、,不能构成直角三角形;
B、,不能构成直角三角形;
C、,能构成直角三角形;
D、,不能构成直角三角形;
故选C.
考查了勾股数的判定方法,比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.
8、C
【解析】
根据一次函数的定义,可得答案.
【详解】
A、是一次函数,故A正确;
B、是一次函数,故B正确;
C、是二次函数,故C错误;
D、是一次函数,故D正确;
故选:C.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3或6
【解析】
根据点P的位置分类讨论,分别画出对应的图形,根据平行四边形的对边相等列出方程即可求出结论.
【详解】
解:当P运动在线段AD上运动时, AP=3t,CQ=t,
∴DP=AD-AP=12-3t,
∵四边形PDCQ是平行四边形,
∴PD=CQ,
∴12-3t=t,
∴t=3秒;
当P运动到AD线段以外时,AP=3t,CQ=t,
∴DP=3t-12,
∵四边形PDCQ是平行四边形,
∴PD=CQ,
∴3t-12=t,
∴t=6秒,
故答案为:3或6
此题考查的是平行四边形与动点问题,掌握平行四边形的对应边相等和分类讨论的数学思想是解决此题的关键.
10、120°
【解析】
根据平行四边形对角相等求解.
【详解】
平行四边形ABCD中,∠A=∠C,又,
∴∠A=120°,
故填:120°.
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.
11、-2
【解析】
试题解析:∵
∴b=3a
∴.
12、a<-2且a≠-4
【解析】
表示出分式方程的解,由分式方程的解为负值,确定出a的范围即可.
【详解】
解:方程=1,
去分母得:2x-a=x+2,
解得:x=a+2,
由分式方程的解为负值,得到a+2<0,且a+2≠-2,
解得:a<-2且a≠-4,
故答案为:a<-2且a≠-4
此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.
13、1
【解析】
试题分析:要求PM+PN的最小值,PM,PN不能直接求,可考虑通过作辅助线转化PN,PM的值,从而找出其最小值求解.如图:作ME⊥AC交AD于E,连接EN,则EN就是PM+PN的最小值,∵M、N分别是AB、BC的中点,∴BN=BM=AM,∵ME⊥AC交AD于E,∴AE=AM,∴AE=BN,AE∥BN,∴四边形ABNE是平行四边形,而由已知可得AB=1∴AE=BN,∵四边形ABCD是菱形,∴AE∥BN,∴四边形AENB为平行四边形,∴EN=AB=1,∴PM+PN的最小值为1.
考点:轴对称—最短路径问题
点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.综合运用这些知识是解决本题的关键
三、解答题(本大题共5个小题,共48分)
14、(2)P(,);(2);(3)(,)
【解析】
(2把k=2代入l2解析式,当k=2时,直线l2为y=x+2.与l2组成方程组
, 解这个方程组得:,
∴P(,);
(2)当y=0时,kx+2k=0 ,∵k≠0,∴x=-2,
∴C(-2,0),OC=2,当y=0时,-x+3=0,∴x=6,
∴A(6,0),OA=6 ,
过点P作PG⊥DF于点G,
在△PDG和△ADE中,
∴△PDG≌△ADE,
得DE=DG=DF,
∴PD=PF,
∴∠PFD=∠PDF
∵∠PFD+∠PCA=90°,∠PDF+∠PAC=90°
∴∠PCA=∠PAC,
∴PC=PA
过点P作PH⊥CA于点H,
∴CH=CA=4,
∴OH=2,
当x=2时,y=−×2+3=2代入y=kx+2k,得k=;
(3)在Rt△PMC和Rt△PQR中,
∴Rt△PMC≌Rt△PQR,
∴CM=RQ,
∴NR=NC,
设NR=NC=a,则R(−a−2,a),
代入y=−x+3,
得− (−a−2)+3=a,解得a=8,
设P(m,n),则
解得
∴P(,)
考点:2.一次函数与二元一次方程组综合题;2.三角形全等的运用.
15、(1)200,64;(2)126°;(3)1200人.
【解析】
(1)共抽样调查了50÷25%=200(名),200﹣(16+50+70)=64(名);
(2)“D”对应扇形的圆心角360°×=126°;
(3)估计全校学生中家庭藏书超过60本的人数为(50+70)=1200(人).
【详解】
解:(1)50÷25%=200(名),
200﹣(16+50+70)=64(名)
故答案为:200,64;
(2)“D”对应扇形的圆心角360°×=126°.
故答案为:126°;
(3)(50+70)=1200(人),
答:估计全校学生中家庭藏书超过60本的人数为1200人.
本题考查了扇形统计图的相关知识,正确读懂图表是解题的关键.
16、 (1) 统计图补充完整如图所示见解析;(2)二班的平均数为:a=82.8 ,一班的中位数为:b=85, 二班的众数为:c=100 ; (3)①从平均数和众数的角度来比较二班的成绩更好;②从B级以上(包括B级)的人数的角度来比较一班的成绩更好.
【解析】
(1)根据题意和表格中的数据可以求得一班C等级的学生数,从而可以解答本题;
(2)根据表格中的数据可以求得一班的平均数和中位数,以及二班的众数;
(3)根据表格中的数据,可以从两方面比较一班和二班成绩的情况.
【详解】
解:(1)一班中C级的有25-6-12-5=2人
如图所示
(2) 一班的平均数为:a= =82.8,
一班的中位数为:b=85
二班的众数为:c=100 ;
(3)①从平均数和众数的角度来比较二班的成绩更好;
②从B级以上(包括B级)的人数的角度来比较一班的成绩更好.
故答案为(1) 统计图补充完整如图所示见解析;(2)二班的平均数为:a=82.8 ,一班的中位数为:b=85, 二班的众数为:c=100 ; (3)①从平均数和众数的角度来比较二班的成绩更好;②从B级以上(包括B级)的人数的角度来比较一班的成绩更好.
本题考查条形统计图、扇形统计图、众数、中位数、加权平均数,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
17、;其整数解为大于的所有整数.
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解不等式,得:,
解不等式,得:,
则不等式的解集为,
不等式的整数解为大于的所有整数.
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
18、 (1)12;(2)5
【解析】
(1)先证明△ABD是等腰三角形,再根据三线合一得到,利用勾股定理求得AE的长;
(2)利用三角线的中位线定理可得:,再进行求解.
【详解】
解:(1)
∴
∵平分,
∴
根据勾股定理,得
(2)由(1),知,
又∵,
∴.
考查了三角形中位线定理,解题关键是利用三线合一和三角形的中位线.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
【分析】由矩形的性质可知∠D=90°,AD=BC=8,DC=AB,AD//BC,继而根据已知可得AB=AE=5,再利用勾股定理即可求得CE的长.
【详解】∵四边形ABCD是矩形,
∴∠D=90°,AD=BC=8,DC=AB,AD//BC,
∴∠AEB=∠EBC,
又∵∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AB=AE=5,
∴DC=5,DE=AD-AE=3,
∴CE=,
故答案为.
【点睛】本题考查了矩形的性质,勾股定理的应用,求出AB的长是解题的关键.
20、 (0,﹣)
【解析】
根据在y轴上点的坐标特征,可知要求直线y=x﹣与y轴的交点坐标就是令x=0
【详解】
∵当x=0时,y=×0﹣=﹣,
∴与y轴的交点坐标是(0,﹣),
故答案为:(0,﹣).
本题考查了一次函数与y轴的交点坐标的求法,正确理解知识是解题的关键.
21、1
【解析】
根据根与系数的关系得到x1+x2=1,x1×x2=﹣1,然后利用整体思想进行计算.
【详解】
解:∵x1、x2是方程x2﹣x﹣1=1的两根,
∴x1+x2=1,x1×x2=﹣1,
∴x1+x2+x1x2=1﹣1=1.
故答案为:1.
此题考查根与系数的关系,解题关键在于得到x1+x2=1,x1×x2=﹣1.
22、x<2.
【解析】
根据不等式与函数的关系由图像直接得出即可.
【详解】
由图可得关于的不等式的解集为x<2.
故填:x<2.
此题主要考查函数与不等式的关系,解题的关键是熟知函数的性质.
23、1
【解析】
先分析出小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.
【详解】
解:通过读图可知:小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),
所以小明回家的速度是每分钟步行10÷10=1(米).
故答案为:1.
本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.
二、解答题(本大题共3个小题,共30分)
24、1
【解析】
先计算0指数幂、负指数幂和绝对值,再根据有理数加减混合运算法则计算即可得到结果.
【详解】
解:原式=
=1+-
=1.
此题考查了实数加减混合运算,熟练掌握运算法则是解本题的关键.
25、
【解析】
根据反比例函数的图象经过可求得k的值,即可得反比例函数的解析式,再将、代入反比例函数的解析式,求得m、n的值,比较即可解答.
【详解】
∵反比例函数,它的图象经过,,,
∴,
将B,C两点代入反比例函数得,,,
∴.
本题考查了反比例函数图象上点的坐标特征,根据反比例函数图象上点的坐标特征求得反比例函数的解析式是解决问题的关键.
26、见解析;
【解析】
连接BD交AC于点O,根据平行四边形的性质证明即可.
【详解】
连接BD交AC于点O.
∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.
本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.
题号
一
二
三
四
五
总分
得分
批阅人
平均数(分)
中位数(分)
众数(分)
一班
a
b
85
二班
84
75
c
相关试卷
这是一份2024年山西省朔州地区数学九年级第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山西省临汾市侯马市九年级数学第一学期开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山西省实验中学九年级数学第一学期开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。