![2025届山西省太原志达中学九年级数学第一学期开学联考试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16243301/0-1728713673741/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届山西省太原志达中学九年级数学第一学期开学联考试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16243301/0-1728713673807/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届山西省太原志达中学九年级数学第一学期开学联考试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16243301/0-1728713673846/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届山西省太原志达中学九年级数学第一学期开学联考试题【含答案】
展开
这是一份2025届山西省太原志达中学九年级数学第一学期开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)生活处处有数学:在五一出游时,小明在沙滩上捡到一个美丽的海螺,经仔细观察海螺的花纹后画出如图所示的蝶旋线,该螺旋线由一系列直角三角形组成,请推断第n个三角形的面积为( )
A.B.C.D.
2、(4分)下列二次根式中,与是同类二次根式的是( )
A.B.C.D.
3、(4分)如果代数式有意义,那么x的取值范围是( )
A.x≥0B.x≠1C.x>1D.x≥0且 x≠1
4、(4分)的值为( )
A.B.C.4D.8
5、(4分)若关于x的一元二次方程有实数根,则整数a的最大值是( )
A.4B.5C.6D.7
6、(4分)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表所示,你认为商家更应该关注鞋子尺码的( )
A.平均数B.中位数C.众数D.方差
7、(4分)如图,在方格中有两个涂有阴影的图形M、N,每个小正方形的边长都是1个单位长度,图(1)中的图形M平移后位置如图(2)所示,以下对图形M的平移方法叙述正确的是( )
A.先向右平移2个单位长度,再向下平移3个单位长度
B.先向右平移1个单位长度,再向下平移3个单位长度
C.先向右平移1个单位长度,再向下平移4个单位长度
D.先向右平移2个单位长度,再向下平移4个单位长度
8、(4分)函数y=kx+1与函数y=在同一坐标系中的大致图象是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE//BD,DE//AC,若AD=5,则四边形CODE的周长______.
10、(4分)如右图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则此最短路径的长为 .
11、(4分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于 的二元一次方程组的解是_____.
12、(4分)如图,在直角三角形中,,、、分别是、、的中点,若=6厘米,则的长为_________.
13、(4分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲、乙两台包装机同时包装的糖果,从中各抽出袋,测得实际质量(g)如下:甲: ;乙: .
(1)分别计算两组数据的平均数(结果四舍五入保留整数)和方差;
(2)哪台包装机包装糖果的质量比较稳定(方差公式:)
15、(8分)近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.
(1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?
(2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?
16、(8分)如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.
(1)求证:四边形ABEF为菱形;
(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.
17、(10分) (1)分解因式:﹣m+2m2﹣m3
(2)化简:( +)÷(﹣).
18、(10分)如图,中,延长到点,延长到点,使,连接、.
求证:四边形是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)正方形的边长为,则这个正方形的对角线长为_________.
20、(4分)已知,菱形中,、分别是、上的点,且,,则__________度.
21、(4分)若代数式在实数内范围有意义,则 x 的取值范围是_________.
22、(4分)如图,菱形的对角线相交于点,若,则菱形的面积=____.
23、(4分)计算的结果是______________。
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以A B为边在第二象限内作正方形ABCD.
(1)求点A、B的坐标,并求边AB的长;
(2)求点D的坐标;
(3)在x轴上找一点M,使△MDB的周长最小,请求出M点的坐标.
25、(10分)成都市某超市从生产基地购进200千克水果,每千克进价为2元,运输过程中质量损失5%,假设不计超市其他费用
(1)如果超市在进价的基础上提高5%作为售价,请你计算说明超市是否亏本;
(2)如果该水果的利润率不得低于14%,那么该水果的售价至少为多少元?
26、(12分)如图,在由边长为1的小正方形组成的网格中,的三个顶点均在格点上,请解答:
(1)判断的形状,并说明理由;
(2)在网格图中画出AD//BC,且AD=BC;
(3)连接CD,若E为BC中点,F为AD中点,四边形AECF是什么特殊的四边形?请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据勾股定理分别求出、,根据三角形的面积公式分别求出第一个、第二个、第三个三角形的面积,总结规律,根据规律解答即可.
【详解】
解:第1个三角形的面积,
由勾股定理得,,
则第2个三角形的面积,
,
则第3个三角形的面积,
则第个三角形的面积,
故选:.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.
2、C
【解析】
判断是否为同类二次根式必须先化为最简二次根式,若化为最简二次根式后,被开方数相同则为同类二次根式.
【详解】
解:A、,与不是同类二次根式;
B、,与不是同类二次根式;
C、,与是同类二次根式;
D、,与不是同类二次根式;
故选C.
主要考查如何判断同类二次根式,需注意的是必需先化为最简二次根式再进行判断.
3、C
【解析】
根据二次根式中被开方数是非负数,分式分母不为零列出不等式即可求出答案.
【详解】
根据题意可知,解得x>1,
故答案选C.
本题考查的是二次根式和分式存在有意义的条件,熟知该知识点是解题的关键.
4、C
【解析】
表示16的算术平方根,根据二次根式的意义解答即可.
【详解】
.
故选C.
主要考查了二次根式的化简.注意最简二次根式的条件是:
①被开方数的因数是整数,因式是整式;
②被开方数中不含能开得尽方的因数因式.
上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.
5、B
【解析】
根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a≤ 且a≠6,然后找出此范围内的最大整数即可.
【详解】
根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,
解得a≤ 且a≠6,
所以整数a的最大值为5.
故选B.
本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.
6、C
【解析】
此题主要考查了统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.
【详解】
解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,
∴鞋店最喜欢的是众数.
故选C.
考点:统计量的选择.
7、B
【解析】
根据平移前后图形M中某一个对应顶点的位置变化情况进行判断即可.
【详解】
由图(1)可知,图M先向右平移1个单位长度,再向下平移3个单位长度,可得题图(2),
故选B
本题主要考查了图形的平移,平移由平移方向和平移距离决定,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.
8、A
【解析】
试题分析:根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.①当k>0时,y=kx+1与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k<0时,y=kx+1与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.
故选A.
考点:反比例函数的图象;一次函数的图象.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
通过矩形的性质可得,再根据∠AOB=11°,可证△AOD是等边三角形,即可求出OD的长度,再通过证明四边形CODE是菱形,即可求解四边形CODE的周长.
【详解】
∵四边形ABCD是矩形
∴
∵∠AOB=11°
∴
∴△AOD是等边三角形
∵
∴
∴
∵CE//BD,DE//AC
∴四边形CODE是平行四边形
∵
∴四边形CODE是菱形
∴
∴四边形CODE的周长
故答案为:1.
本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.
10、
【解析】
试题分析:如图,将正方体的三个侧面展开,连结AB,则AB最短,.
考点:1.最短距离2.正方体的展开图
11、x=1,y=1
【解析】
由图可知:两个一次函数的交点坐标为(1,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
【详解】
解:函数y=ax+b和y=kx的图象交于点P(1,1)
即x=1,y=1同时满足两个一次函数的解析式.
所以,方程组的解是 ,
故答案为x=1,y=1.
本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
12、6厘米
【解析】
根据直角三角形斜边中线等于斜边一半算出AB,再根据中位线的性质求出EF即可.
【详解】
∵∠BCA=90°,且D是AB的中点,CD=6,
∴AB=2CD=12,
∵E、F是AC、BC的中点,
∴EF=.
故答案为:6厘米
本题考查直角三角形中线的性质、中位线的性质,关键在于熟练掌握相关基础知识.
13、55
【解析】
利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.
【详解】
设长为8x,高为11x,
由题意,得:19x+20≤115,
解得:x≤5,
故行李箱的高的最大值为:11x=55,
答:行李箱的高的最大值为55厘米.
此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1),,,;(2)乙包装机包装的质量比较稳定.
【解析】
(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;
(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.
【详解】
解:(1) ,
;
,
;
(2)因为
所以乙包装机包装袋糖果的质量比较稳定.
故答案为:(1),,,;(2)乙包装机包装的质量比较稳定.
本题考查平均数、方差的计算以及它们的意义,熟练掌握计算公式是解题的关键.
15、(1)每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元(2)至少进货甲种空气净化器10台.
【解析】
(1)设每台甲种空气净化器为x元,乙种净化器为(x+300)元,根据用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同,列出方程求解即可;
(2)设甲种空气净化器为y台,乙种净化器为(30﹣y)台,根据进货花费不超过42000元,列出不等式求解即可.
【详解】
(1)设每台甲种空气净化器为x元,乙种净化器为(x+300)元,由题意得:
,
解得:x=1200,
经检验得:x=1200是原方程的解,
则x+300=1500,
答:每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元.
(2)设甲种空气净化器为y台,乙种净化器为(30﹣y)台,根据题意得:
1200y+1500(30﹣y)≤42000,
y≥10,
答:至少进货甲种空气净化器10台.
本题考查分式方程和不等式的应用,分析题意,找到合适的等量关系列出方程和不等式是解决问题的关键.
16、(1)见解析;(2)1.
【解析】
(1)先证四边形ABEF为平行四边形,继而再根据AB=AF,即可得四边形ABEF为菱形;
(2)由四边形ABEF为菱形可得AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,求出AO的长即可得答案.
【详解】
(1)由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠FAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=FA,
∴四边形ABEF为平行四边形,
∵AB=AF,
∴四边形ABEF为菱形;
(2)∵四边形ABEF为菱形,
∴AE⊥BF,BO=FB=3,AE=2AO,
在Rt△AOB中,AO==4,
∴AE=2AO=1.
本题考查了平行四边形的性质,菱形的判定与性质,熟练掌握相关知识是解题的关键.
17、解:(1)﹣m(1﹣m)2;(2).
【解析】
(1)先提取公因式−m,再利用完全平方公式分解可得;
(2)先计算括号内分式的加减运算,再将除法转化为乘法,继而约分可得.
【详解】
解:(1)原式=﹣m(1﹣2m+m2)=﹣m(1﹣m)2;
(2)原式=.
本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则及因式分解的基本步骤.
18、证明见解析
【解析】
根据平行四边形性质得出AD//BC,AD=BC,求出AF=EC,AF//EC,得出四边形DEBF是平行四边形,根据平行四边形的性质推出即可
【详解】
证明:∵四边形是平行四边形,
∴且,
又∵,
∴,
,
∴四边形是平行四边形.
此题主要考查平行四边形的判定与性质,解题关键在于掌握平行四边形的性质及定理
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
如图(见解析),先根据正方形的性质可得,再利用勾股定理即可得.
【详解】
如图,四边形ABCD是边长为正方形
则
由勾股定理得:
即这个正方形的两条对角线相等,长为1
故答案为:1.
本题考查了正方形的性质、勾股定理,掌握理解正方形的性质是解题关键.
20、
【解析】
先连接AC,证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,最后运用三角形外角性质,求出∠CEF的度数.
【详解】
如图,连接AC,
在菱形ABCD中,AB=BC,
∵∠B=60°,
∴△ABC是等边三角形,
∴AB=AC,
∵∠BAE+∠CAE=∠BAC=60°,
∠CAF+∠EAC=∠EAF=60°,
∴∠BAE=∠CAF,
∵∠B=∠ACF=60°,
在△ABE和△ACF中,
∠B=∠ACF,AB=AC,∠BAE=∠CAF,
∴△ABE≌△ACF(ASA),
∴AE=AF,
又∵∠EAF=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
由三角形的外角性质,∠AEF+∠CEF=∠B+∠BAE,
∴60°+∠CEF=60°+23°,
解得∠CEF=23°.
故答案为23°.
本题考查了菱形的性质和全等三角形的判定,熟练掌握全等三角形的判定方法,结合等边三角形性质和外角定义是解决本题的关键因素.
21、x>1
【解析】
根据分式及二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
【详解】
∵代数式在实数范围内有意义,
∴.
故答案为:x>1.
本题考查二次根式及分式有意义的条件,掌握二次根式及分式有意义的条件是解答此题的关键.
22、3.
【解析】
先求出菱形对角线AC和BD的长度,利用菱形面积等于对角线乘积的一半求解即可.
【详解】
因为四边形ABCD是菱形,
所以AC⊥BD.
在Rt△AOB中,利用勾股定理求得BO=1.
∴BD=6,AC=2.
∴菱形ABCD面积为×AC×BD=3.
故答案为:3.
本题主要考查了菱形的性质,解题的关键是熟记菱形面积的求解方法,运用对角线求解面积是解题的最优途径.
23、
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
解:原式
故答案为:
本题考查了二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则
二、解答题(本大题共3个小题,共30分)
24、(1);(2)D(-6,4);(3)M(-2,0)
【解析】
(1)由题意将y=0和x=0分别代入即可求出点A、B的坐标,进而求出边AB的长;
(2)根据题意作DH⊥轴于H,并利用全等三角形的判定与性质求得△DAH≌△ABO,进而得出DH和OH的值即可;
(3)根据题意作D点关于轴的对称点为E,并连接BE交x轴于点M,△MDB的周长为,有为定值,只需满足的值最小即可,将进行转化,根据两点间线段最短即可知道此时的M即为所求,解出直线BE的解析式即可得到M点的坐标.
【详解】
解:(1)由题意直线y=x+2与x轴、y轴分别交于A、B两点,将y=0和x=0分别代入即可求出点A、B的坐标为:A(-4,0),B(0,2),
所以AB=.
(2)作DH⊥轴于H,
由于∠DHA=∠BAD=90°,
∠DAH+∠BAO=90°,
∠BAO+∠ABO=90°,
∴∠DAH=∠ABO,
又DA=AB,
∴△DAH≌△ABO(AAS),
则DH=OA=4,AH=OB=2,OH=4+2=6,
∵点D的坐标在第二象限,
∴D(-6,4).
(3)作D点关于轴的对称点为E,并连接BE交x轴于点M,
根据轴对称的性质可知,E(-6,-4),
△MDB的周长为:,有为定值,只需满足的值最小即可,
将进行转化,根据两点间线段最短即可知道此时的M即为所求,
利用待定系数法求得直线BE的解析式为,
直线与轴的交点坐标为(-2,0),
故M(-2,0).
本题考查一次函数与正方形,涉及的知识有待定系数法求一次函数解析式,坐标与图形性质,勾股定理,全等三角形的判定与性质,正方形的性质,对称性质,以及一次函数与坐标轴的交点,熟练掌握相关性质及定理是解答本题的关键.
25、(1)如果超市在进价的基础上提高5%作为售价,则亏本1元;(2)该水果的售价至少为2.1元/千克.
【解析】
(1)根据利润=销售收入-成本,即可求出结论;
(2)根据利润=销售收入-成本结合该水果的利润率不得低于11%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.
【详解】
(1)2×(1+5%)×200×(1﹣5%)﹣100=﹣1(元).
答:如果超市在进价的基础上提高5%作为售价,则亏本1元.
(2)设该水果的售价为x元/千克,
根据题意得:200×(1﹣5%)x﹣200×2≥200×2×11%,
解得:x≥2.1.
答:该水果的售价至少为2.1元/千克.
本题考查了一元一次不等式的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据各数量间的关系,正确列出一元一次不等式.
26、(1)是直角三角形,理由见解析;(2)图见解析;(3)四边形是菱形,理由见解析.
【解析】
(1)先结合网格特点,利用勾股定理求出三边长,再根据勾股定理的逆定理即可得;
(2)先利用平移的性质得到点D,再连接AD即可;
(3)先根据线段中点的定义、等量代换可得,再根据平行四边形的判定可得四边形AECF是平行四边形,然后根据直角三角形的性质可得,最后根据菱形的判定、正方形的判定即可得.
【详解】
(1)是直角三角形,理由如下:
,,
即
是直角三角形;
(2)由平移的性质可知,先将点B向下平移3个单位,再向右平移4个单位可得点C
同样,先将点A向下平移3个单位,再向右平移4个单位可得点D,然后连接AD
则有,且,作图结果如下所示:
(3)四边形是菱形,理由如下:
为中点,为中点
,
,即
四边形是平行四边形
又为中点,是的斜边
平行四边形是菱形
不是等腰直角三角形
与BC不垂直,即
菱形不是正方形
综上,四边形是菱形.
本题考查了作图—平移、勾股定理与勾股定理的逆定理、菱形的判定、正方形的判定等知识点,较难的是题(3),熟练掌握特殊四边形的判定方法是解题关键.
题号
一
二
三
四
五
总分
得分
尺码/cm
22
22.5
23
23.5
24
24.5
25
销售量/双
4
6
6
10
2
1
1
相关试卷
这是一份山西省太原市志达中学2023-2024学年数学九年级第一学期期末联考试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,将两个圆形纸片,如图图形中,是中心对称图形的是,下列说法中错误的是等内容,欢迎下载使用。
这是一份2023-2024学年山西省太原志达中学数学九年级第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,﹣的绝对值为,正五边形的每个外角度数为等内容,欢迎下载使用。
这是一份2023-2024学年山西省太原市小店区志达中学九年级数学第一学期期末统考试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,已知函数等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)