终身会员
搜索
    上传资料 赚现金
    2025届上海市廊下中学九上数学开学调研试题【含答案】
    立即下载
    加入资料篮
    2025届上海市廊下中学九上数学开学调研试题【含答案】01
    2025届上海市廊下中学九上数学开学调研试题【含答案】02
    2025届上海市廊下中学九上数学开学调研试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届上海市廊下中学九上数学开学调研试题【含答案】

    展开
    这是一份2025届上海市廊下中学九上数学开学调研试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,某班数学兴趣小组利用数学知识测量建筑物DEFC的高度.他们从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平的地面,则此建筑物的高度CD约为( )米.(参考数据:≈1.7,tan35°≈0.7)
    A.23.1B.21.9C.27.5D.30
    2、(4分) “弘扬柳乡工匠精神,共筑乡村振兴之梦”第三届柳编文化节暨首届“襄阳人游襄州”启动仪式在浩然广场举行。为了迎接此次盛会,某工艺品厂柳编车间组织名工人赶制一批柳编工艺品,为了解每名工人的日均生产能力,随机调查了某天每个工人的生产件数,获得数据如下表:
    则这一天名工人生产件数的众数和中位数分别是( )
    A.件、件B.件、件C.件、件D.件、件
    3、(4分)已知函数y=,则自变量x的取值范围是( )
    A.﹣1<x<1B.x≥﹣1且x≠1C.x≥﹣1D.x≠1
    4、(4分)为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21名同学进行相应的排球训练,该训练队成员的身高如下表:
    则该校排球队21名同学身高的众数和中位数分别是(单位:cm)( )
    A.185,178B.178,175C.175,178D.175,175
    5、(4分)如图,在菱形中,是菱形的高,若对角线、的长分别是6、8,则的长是
    A.B.C.D.5
    6、(4分)如图,已知正方形 ABCD 的边长为 10,E 在 BC 边上运动,取 DE 的中点 G,EG 绕点 E 顺时针旋转90°得 EF,问 CE 长为多少时,A、C、F 三点在一条直线上( )
    A.B.C.D.
    7、(4分)在一次中学生田径运动会上,男子跳高项目的成绩统计如下:
    表中表示成绩的一组数据中,众数和中位数分别是
    A.,B.,C.,D.,
    8、(4分)已知一组数据:1,2,8,,7,它们的平均数是1.则这组数据的中位数是( )
    A.7B.1C.5D.4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=a,则AB=2a,它的根据是________.
    10、(4分)(-4)2的算术平方根是________ 64的立方根是 _______
    11、(4分)如图,在正方形的外侧,作等边三角形,则为__________.
    12、(4分)已知x+y=﹣1,xy=3,则x2y+xy2=_____.
    13、(4分)如图,在平行四边形ABCD中,连接AC,按以下步骤作图:分别以点A,C为圆心,以大于AC的长为半径画弧,两弧分别相交于点M,N,作直线MN交CD于点E,交AB于点F.若AB=5,BC=3,则△ADE的周长为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知平行四边形ABCD的周长是32 cm,,,,E,F是垂足,且
    (1)求的度数;
    (2)求BE,DF的长.
    15、(8分)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒:
    (1)填空:当点M在AC上时,BN= (用含t的代数式表示);
    (2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;
    (3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.
    16、(8分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).
    他们的各项成绩如下表所示:
    (1)直接写出这四名候选人面试成绩的中位数;
    (2)现得知候选人丙的综合成绩为87.6分,求表中x的值;
    (3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.
    17、(10分)如图,在直角坐标系中,,,是线段上靠近点的三等分点.
    (1)若点是轴上的一动点,连接、,当的值最小时,求出点的坐标及的最小值;
    (2)如图2,过点作,交于点,再将绕点作顺时针方向旋转,旋转角度为,记旋转中的三角形为,在旋转过程中,直线与直线的交点为,直线与直线交于点,当为等腰三角形时,请直接写出的值.
    18、(10分)如图,直线与轴交于点,点是该直线上一点,满足.
    (1)求点的坐标;
    (2)若点是直线上另外一点,满足,且四边形是平行四边形,试画出符合要求的大致图形,并求出点的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若关于的方程无解,则的值为________.
    20、(4分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是_____
    21、(4分)分解因式:___________.
    22、(4分)如图,圆柱体的高为8cm,底面周长为4cm,小蚂蚁在圆柱表面爬行,从A点到B点,路线如图所示,则最短路程为_____.
    23、(4分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)因式分解:
    (1)2x3﹣8x;
    (2)(x+y)2﹣14(x+y)+49
    25、(10分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.
    (1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;
    (2)求证:四边形ABCE是矩形.
    26、(12分)先化简,再求值:÷(2+),其中x=﹣1.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    过点B作BN⊥AD,BM⊥DC垂足分别为N,M,设BN=x,则AN=2.4x,在Rt△ABN中,根据勾股定理求出x的值,从而得到BN和DM的值,然后分别在Rt△BDM和Rt△BCM中求出BM和CM的值,即可求出答案.
    【详解】
    如图所示:过点B作BN⊥AD,BM⊥DC垂足分别为N,M,
    ∵i=1:2.4,AB=26m,
    ∴设BN=x,则AN=2.4x,
    ∴AB==2.6x,
    则2.6x=26,
    解得:x=10,
    故BN=DM=10m,
    则tan30°= = = ,
    解得:BM=10,
    则tan35°== =0.7,
    解得:CM≈11.9(m),
    故DC=MC+DM=11.9+10=21.9(m).
    故选B.
    本题考查了解直角三角形的应用,如果没有直角三角形则作垂线构造直角三角形,然后利用直角三角形的边角关系来解决问题,有时还会用到勾股定理,相似三角形等知识才能解决问题.
    2、C
    【解析】
    中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果数据的个数是偶数就是中间两个数的平均数,众数是指一组数据中出现次数最多的数据.
    【详解】
    数据3出现的次数最多,所以众数为3件;
    因为共16人,
    所以中位数是第8和第9人的平均数,即中位数==4件,
    故选:C.
    本题考查众数和中位数,解题关键在于熟练掌握计算法则.
    3、B
    【解析】
    根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.
    【详解】
    解:根据题意得:,
    解得:x≥-1且x≠1.
    故选B.
    点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数为非负数.
    4、D
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.
    【详解】
    解:因为175出现的次数最多,
    所以众数是:175cm;
    因为第十一个数是175,
    所以中位数是:175cm.
    故选:D.
    本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
    5、B
    【解析】
    由菱形的性质可得AC⊥BD,BO=DO=4,CO=AO=3,由勾股定理可求CB=5,由菱形的面积公式可求AE的长.
    【详解】
    解:四边形是菱形
    ,,
    故选:.
    本题菱形的性质,熟练运用菱形的面积公式是本题的关键.
    6、C
    【解析】
    过F作BC的垂线,交BC延长线于N点,连接AF.只要证明Rt△FNE∽Rt△ECD,利用相似比2:1解决问题.再证明△CNF是等腰直角三角形即可解决问题.
    【详解】
    过F作BC的垂线,交BC延长线于N点,连接AF.
    ∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,
    ∴∠DEC=∠EFN,
    ∴Rt△FNE∽Rt△ECD,
    ∵DE的中点G,EG绕E顺时针旋转90°得EF,
    ∴两三角形相似比为1:2,
    ∴可以得到CE=2NF,NE=CD=5.
    ∵AC平分正方形直角,
    ∴∠NFC=45°,
    ∴△CNF是等腰直角三角形,
    ∴CN=NF,
    ∴CE=NE=5=,
    故选C.
    本题考查正方形的性质和旋转的性质,解题的关键是掌握正方形的性质和旋转的性质.
    7、B
    【解析】
    根据出现最多的数为众数解答;
    按照从小到大的顺序排列,然后找出中间的一个数即为中位数.
    【详解】
    出现次数最多的数为1.55m,是众数;
    21个数按照从小到大的顺序排列,中间一个是1.60m,所以中位数是1.60m.
    故选B.
    考查了众数,中位数的定义,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
    8、A
    【解析】
    分析:首先根据平均数为1求出x的值,然后根据中位数的概念求解.
    详解:由题意得:1+2+8+x+2=1×5,解得:x=2,这组数据按照从小到大的顺序排列为:2,1,2,2,8,则中位数为2.
    故选A.
    点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、三角形的中位线等于第三边的一半
    【解析】
    ∵D,E分别是AC,BC的中点,
    ∴DE是△ABC的中位线,
    ∴DE=AB,
    设DE=a,则AB=2a,
    故答案是:三角形的中位线等于第三边的一半.
    10、 4, 4
    【解析】【分析】根据算术平方根和立方根的意义可求解.
    【详解】因为42=16,43=64,
    所以,(-4)2的算术平方根是4, 64的立方根是4.
    故答案为:(1). 4, (2). 4
    【点睛】本题考核知识点:算术平方根,立方根. 解题关键点:理解算术平方根,立方根的定义.
    11、15
    【解析】
    分析:根据等边三角形的性质及正方形的性质可得到AB=AE,从而可求得∠BAE的度数,则可求∠AEB的度数.
    详解:∵四边形是正方形,
    ∴,,
    又∵是正三角形,
    ∴,,
    ∴,
    ∴为等腰三角形,,
    ∴.
    故答案为:15.
    点睛:主要考查了正方形和等边三角形的特殊性质,关键是根据等腰三角形的性质得到相等的角.
    12、-1
    【解析】
    直接利用提取公因式法分解因式,进而把已知数据代入求出答案.
    【详解】
    解:∵x+y=﹣1,xy=1,∴x2y+xy2=xy(x+y)
    =1×(﹣1)
    =﹣1.
    故答案为﹣1.
    本题主要考查了提取公因式法分解因式,正确分解因式是解题的关键.
    13、8
    【解析】
    解:由做法可知MN是AC的垂直平分线,
    ∴AE=CE.
    ∵四边形ABCD是平行四边形
    ∴CD=AB=5,AD=BC=3.
    ∴AD+DE+AE=AD+DE+CE=AD+CD=5+3=8,
    ∴△ADE的周长为8.
    三、解答题(本大题共5个小题,共48分)
    14、(1)∠C=60°;(2)BE=5cm,DF=3cm.
    【解析】
    (1)结合已知条件,由四边形的内角和为360°即可解答;(2)根据平行四边形的性质结合已知条件求得AB=10cm,BC=6cm.再根据30°角直角三角形的性质即可求解.
    【详解】
    (1)∵AE⊥BC,AF⊥CD,
    ∴∠AFD=∠AEB=90°,
    ∴∠EAF+∠C=360°﹣90°﹣90°=180°.
    又∵∠EAF=2∠C,
    ∴∠C=60°.
    (2)∵▱ABCD的周长是32cm,,
    ∴AB=10cm,BC=6cm.
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠ABE=∠C=60°,
    在Rt△ABE中,BE=AB,
    ∵AB=10 cm,
    ∴BE=5 cm,
    同理DF=3 cm.
    ∴BE=5cm,DF=3cm.
    本题考查了平行四边形的性质及30°角直角三角形的性质,熟练运用有关性质是解决问题的关键.
    15、(1)BN=2﹣t;(2)当t=4﹣或t=3或t=2时,△DNE是等腰三角形;(3)当t=时,S取得最大值.
    【解析】
    (1)由等腰直角三角形的性质知AB=2,MN=AM=t,AN=﹣AM=﹣t,据此可得;
    (2)先得出MN=DM=4﹣t,BP=PN=t﹣2,PE=4﹣t,由勾股定理得出NE=,再分DN=DE,DN=NE,DE=NE三种情况分别求解可得;
    (3)分0≤t<2和2≤t≤4两种情况,其中0≤t<2重合部分为直角梯形,2≤t≤4时重合部分为等腰直角三角形,根据面积公式得出面积的函数解析式,再利用二次函数的性质求解可得.
    【详解】
    (1)如图1,
    ∵∠ACB=90°,AC=BC=2,
    ∴∠A=∠ABC=45°,AB=2,
    ∵AM=t,∠AMN=90°,
    ∴MN=AM=t,AN=AM=t,
    则BN=AB﹣AN=
    故答案为
    (2)如图2,
    ∵AM=t,AC=BC=CD=2,∠BDC=∠DBE=45°,
    ∴DM=MN=AD﹣AM=4﹣t,
    ∴DN=DM=(4﹣t),
    ∵PM=BC=2,
    ∴PN=2﹣(4﹣t)=t﹣2,
    ∴BP=t﹣2,
    ∴PE=BE﹣BP=2﹣(t﹣2)=4﹣t,
    则NE=,
    ∵DE=2,
    ∴①若DN=DE,则(4﹣t)=2,解得t=4﹣;
    ②若DN=NE,则(4﹣t)=,解得t=3;
    ③若DE=NE,则2=,解得t=2或t=4(点N与点E重合,舍去);
    综上,当t=4﹣或t=3或t=2时,△DNE是等腰三角形.
    (3)①当0≤t<2时,如图3,
    由题意知AM=MN=t,
    则CM=NQ=AC﹣AM=2﹣t,
    ∴DM=CM+CD=4﹣t,
    ∵∠ABC=∠CBD=45°,∠NQB=∠GQB=90°,
    ∴NQ=BQ=QG=2﹣t,
    则NG=4﹣2t,

    当t=时,S取得最大值;
    ②当2≤t≤4时,如图4,
    ∵AM=t,AD=AC+CD=4,
    ∴DM=AD﹣AM=4﹣t,
    ∵∠DMN=90°,∠CDB=45°,
    ∴MN=DM=4﹣t,
    ∴S=(4﹣t)2=(t﹣4)2,
    ∵2≤t≤4,
    ∴当t=2时,S取得最大值2;
    综上,当t=时,S取得最大值.
    本题是四边形的综合问题,解题的关键是掌握正方形的性质和等腰直角三角形的判定与性质,等腰三角形的判定及二次函数性质的应用等知识点.
    16、(1)这四名候选人面试成绩的中位数为89(分);(2)表中x的值为86;(3)以综合成绩排序确定所要招聘的前两名的人选是甲和丙.
    【解析】
    (1)根据中位数的概念计算;
    (2)根据题意列出方程,解方程即可;
    (3)根据加权平均数的计算公式分别求出余三名候选人的综合成绩,比较即可.
    【详解】
    (1)这四名候选人面试成绩的中位数为:=89(分);
    (2)由题意得,x×60%+90×40%=87.6
    解得,x=86,
    答:表中x的值为86;
    (3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分),
    乙候选人的综合成绩为:84×60%+92×40%=87.2(分),
    丁候选人的综合成绩为:88×60%+86×40%=87.2(分),
    ∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.
    本题考查的是中位线、加权平均数,掌握中位数的概念、加权平均数的计算公式是解题的关键.
    17、(1),;(2)α的值为45°,90°,135°,180°.
    【解析】
    (1)作HG⊥OB于H.由HG∥AO,求出OG,HG,即可得到点H的坐标,作点B关于y轴的对称点B′,连接B′H交y轴于点M,则B'(-2,0),此时MB+MH的值最小,最小值等于B'H的长;求得直线B′H的解析式为y= ,即可得到点M的坐标为.
    (2)依据△OST为等腰三角形,分4种情况画出图形,即可得到旋转角的度数.
    【详解】
    解:(1)如图1,作HG⊥OB于H.
    ∵HG∥AO,

    ∵OB=2,OA= ,
    ∴GB= ,HG= ,
    ∴OG=OB-GB= ,
    ∴H(,)
    作点B关于y轴的对称点B′,连接B′H交y轴于点M,则B'(-2,0),
    此时MB+MH的值最小,最小值等于B'H的长.
    ∵B'(-2,0),H(,)
    B'H=
    ∴MB+MH的最小值为
    设直线B'H的解析式为y=kx+b,则有

    解得:
    ∴直线B′H的解析式为
    当x=0时,y=
    ∴点M的坐标为:
    (2)如图,当OT=OS时,α=75°-30°=45°;
    如图,当OT=TS时,α=90°;
    如图,当OT=OS时,α=90°+60°-15°=135°;
    如图,当ST=OS时,α=180°;
    综上所述,α的值为45°,90°,135°,180°.
    本题考查几何变换综合题、平行线分线段成比例定理、轴对称最短问题、勾股定理、等腰三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题.
    18、(1)点坐标为;(2)点.
    【解析】
    (1)先由直线y=-2x+10与x轴交于点A,求出点A坐标为(5,0),所以OA=5;再设点B坐标为(m,n),根据B是直线y=-2x+10上一点,及OB=OA,列出关于m,n的方程组,解方程组即可;
    (2)由于四边形OBCD是平行四边形,根据平行四边形的对边平行且相等得出BC∥OD,BC=OD,再由AB=BC,得出AB=OD,根据一组对边平行且相等的四边形是平行四边形证明出四边形OABD是平行四边形,则BD∥OA且BD=OA=5,由平移的性质即可求出点D的坐标.
    【详解】
    (1)由已知,点坐标为,所以.
    设点坐标为,
    因为是直线上一点

    又, ∴
    解得 或 (与点重合,舍去)
    ∴点坐标为.
    (2)符合要求的大致图形如图所示。
    ∵平行四边形
    ∴且,

    ∴,
    ∴四边形是平行四边形
    ∴且,
    ∴点.
    本题考查了一次函数的综合题,涉及到一次函数图象上点的坐标的求法,二元二次方程组的解法,平行四边形的性质与判定,利用了方程思想及数形结合的思想,(2)中根据平行四边形的性质与判定证明出四边形OABD是平行四边形是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.
    【详解】
    去分母得:3x−2=2x+2+m,
    由分式方程无解,得到x+1=0,即x=−1,
    代入整式方程得:−5=−2+2+m,
    解得:m=−5,
    故答案为-5.
    此题考查分式方程的解,解题关键在于掌握运算法则.
    20、4
    【解析】
    根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得出四边形DBEC是菱形,由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.
    【详解】
    ∵CE∥DB,BE∥DC,
    ∴四边形DBEC为平行四边形.
    又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,
    ∴CD=BD=AC,
    ∴平行四边形DBEC是菱形;
    ∵点D,F分别是AC,AB的中点,AD=3,DF=1,
    ∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC,
    ∴BC=1DF=1.
    又∵∠ABC=90°,
    ∴AB==.
    ∵平行四边形DBEC是菱形,
    ∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4,
    故答案为4.
    考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题.
    21、ab(a+b)(a﹣b).
    【解析】
    分析:先提公因式ab,再把剩余部分用平方差公式分解即可.
    详解:a3b﹣ab3,=ab(a2﹣b2),=ab(a+b)(a﹣b).
    点睛:此题考查了综合提公因式法和公式法因式分解,分解因式掌握一提二用,即先提公因式,再利用平方差或完全平方公式进行分解.
    22、10cm
    【解析】
    将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,从而求出解题中的AC,连接AB,根据两点之间线段最短可得小蚂蚁爬行的最短路程为此时AB的长,然后根据勾股定理即可求出结论.
    【详解】
    解:将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,如下图所示:AC=1.5×4=6cm,连接AB,根据两点之间线段最短,
    ∴小蚂蚁爬行的最短路程为此时AB的长
    ∵圆柱体的高为8cm,
    ∴BC=8cm
    在Rt△ABC中,AB=cm
    故答案为:10cm.
    此题考查的是利用勾股定理求最短路径问题,将圆柱的侧面展开,根据两点之间线段最短即可找出最短路径,然后利用勾股定理求值是解决此题的关键.
    23、4或1
    【解析】
    分别利用,当MN∥BC时,以及当∠ANM=∠B时,分别得出相似三角形,再利用相似三角形的性质得出答案.
    【详解】
    如图1,当MN∥BC时,
    则△AMN∽△ABC,
    故,
    则,
    解得:MN=4,
    如图2所示:当∠ANM=∠B时,
    又∵∠A=∠A,
    ∴△ANM∽△ABC,
    ∴,
    即,
    解得:MN=1,
    故答案为:4或1.
    此题主要考查了相似三角形判定,正确利用分类讨论得出是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)1x(x+1)(x﹣1);(1)(x+y﹣7)1.
    【解析】
    (1)首先提取公因式1x,再利用平方差公式完全平方公式分解因式得出答案;
    (1)直接利用完全平方公式分解因式得出答案.
    【详解】
    解:(1)原式=1x(x1﹣4)
    =1x(x+1)(x﹣1);
    (1)原式=(x+y﹣7)1.
    此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    25、 (1)见解析;(2)见解析.
    【解析】
    (1)根据题意作图即可;
    (2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.
    【详解】
    (1)解:如图所示:E点即为所求;
    (2)证明:∵CE⊥BC,
    ∴∠BCE=90°,
    ∵∠ABC=90°,
    ∴∠BCE+∠ABC=180°,
    ∴AB∥CE,
    ∴∠ABE=∠CEB,∠BAC=∠ECA,
    ∵BD为AC边上的中线,
    ∴AD=DC,
    在△ABD和△CED中

    ∴△ABD≌△CED(AAS),
    ∴AB=EC,
    ∴四边形ABCE是平行四边形,
    ∵∠ABC=90°,
    ∴平行四边形ABCE是矩形.
    本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.
    26、当x=﹣1时,原式==.
    【解析】试题分析:原式=÷=÷==,当x=﹣1时,原式==.
    考点:分式的化简求值.
    题号





    总分
    得分
    身高(cm)
    170
    172
    175
    178
    180
    182
    185
    人数(个)
    2
    4
    5
    2
    4
    3
    1
    成绩
    人数
    2
    8
    6
    4
    1
    修造人
    笔试成绩/分
    面试成绩/分

    90
    88

    84
    92

    x
    90

    88
    86
    相关试卷

    2025届海南省农垦中学数学九上开学调研试题【含答案】: 这是一份2025届海南省农垦中学数学九上开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届广东省中学山市板芙镇数学九上开学调研试题【含答案】: 这是一份2025届广东省中学山市板芙镇数学九上开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年上海市普陀区名校九上数学开学调研试题【含答案】: 这是一份2024年上海市普陀区名校九上数学开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map