年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    [数学]安徽省多校2024-2025学年高二上学期开学考试试题(解析版)

    立即下载
    加入资料篮
    [数学]安徽省多校2024-2025学年高二上学期开学考试试题(解析版)第1页
    [数学]安徽省多校2024-2025学年高二上学期开学考试试题(解析版)第2页
    [数学]安徽省多校2024-2025学年高二上学期开学考试试题(解析版)第3页
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    [数学]安徽省多校2024-2025学年高二上学期开学考试试题(解析版)

    展开

    这是一份[数学]安徽省多校2024-2025学年高二上学期开学考试试题(解析版),共12页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
    1. 已知集合,则( )
    A. B.
    C. D.
    【答案】A
    【解析】,则.则.
    故选:A.
    2. 某学校高二某班向阳学习小组8位同学在一次考试中的物理成绩如下:95,45,62,78,53,83,74,88,则该小组本次考试物理成绩的第60百分位数为( )
    A. 53B. 74C. 78D. 83
    【答案】C
    【解析】将8位同学考试的物理成绩从小到大排列:,
    由,所以数据的第60百分位数为.
    故选:C.
    3. 已知,则“”是的( )
    A. 充分不必要条件B. 必要不充分条件
    C. 充要条件D. 既不充分也不必要条件
    【答案】A
    【解析】,则,且在单调递增.故.
    反过来,如果,则,可以为负数.推不出.
    故“”是的充分不必要条件.
    故选:A.
    4. 已知命题,为假命题,则实数的取值范围为( )
    A. B.
    C. D.
    【答案】B
    【解析】由命题,为假命题,
    可得命题,为真命题,
    即不等式在x∈1,+∞上恒成立,
    即在x∈1,+∞上恒成立,
    令,则,
    可得,
    当且仅当时,即时,即时,等号成立,
    所以,即实数的取值范围为.
    故选:B.
    5. 已知平面向量满足,且在上的投影向量为,则与的夹角为( )
    A. B. C. D.
    【答案】B
    【解析】因为,在上的投影向量为,
    所以,所以,所以,
    由,可知.故选:B.
    6. 如图,在正三棱柱中,分别为棱的中点,,则异面直线所成角的余弦值为( )
    A. B. C. D.
    【答案】D
    【解析】如图,取中点,连接.则,
    且,则四边形为平行四边形,则.
    由图则异面直线所成角为或其补角,
    中,,,.
    由余弦定理可知.
    异面直线所成角的余弦值为.
    故选:D.
    7. 已知是上的减函数,则实数的取值范围为( )
    A. B. C. D.
    【答案】C
    【解析】根据题意保证两段都是减函数,在1附近还要一直减.
    可得,
    解得.
    故选:C.
    8 已知,则( )
    A. B.
    C. D.
    【答案】D
    【解析】,即.
    ,即.
    综上知道.故选:D.
    二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分
    9. 已知复数,则( )
    A. 的虚部为B.
    C. D. 为纯虚数
    【答案】CD
    【解析】对于A,因为,
    所以的虚部为,故选项A错误;
    对于B,因为,故选项B错误;
    对于C,,故选项C正确;
    对于D,为纯虚数,故选项D正确.故选:CD.
    10. 已知函数当时,取得最大值2,且与直线最近的一个零点为,则下列结论中正确的是( )
    A. 的最小正周期为
    B. 的单调递增区间为
    C. 的图象可由函数的图象向右平移个单位长度得到
    D. 若为奇函数,则
    【答案】AC
    【解析】根据题意,化简,
    当时取得最大值2,则,
    与直线最近的一个零点为,则,则,则.
    则.当时取得最大值,则,,
    则,则,则的最小正周期为,A正确;
    令则
    则的单调递增区间为故B错误;
    的图象向右平移个单位长度得到,故C正确;
    ,由于为奇函数,
    则令,则.故D错误.
    故选:AC.
    11. 已知定义域为的函数为奇函数,的图象关于直线对称,则( )
    A. 的图象关于点中心对称B. 为奇函数
    C. 是周期为4的函数D.
    【答案】ACD
    【解析】为奇函数,得到,向右平移1个单位得到,
    则的图象关于点1,0中心对称,则A正确.
    则,的图象关于直线对称,
    则,则,
    则,则是周期为4的函数.则C正确.
    令,则由,知,则f1=0..故D正确.
    前面式子推不出,故B错误.
    故选:ACD.
    三、填空题:本题共3小题,每小题5分,共15分
    12. 已知向量满足,,且,则______.
    【答案】.
    【解析】由向量满足,
    因为,可得,解得,即,
    所以.
    13. 小耿与小吴参与某个答题游戏,此游戏共有5道题,小耿有3道题不会,小吴有1道题不会,小耿与小吴分别从这5道题中任意选取1道题进行回答,且两人选题和答题互不影响,则小耿与小吴恰有1人会答的概率为__________
    【答案】
    【解析】小耿与小吴恰有1人会答,包括两种情况,小耿会小吴不会和小吴会小耿不会.
    则小耿与小吴恰有1人会答的概率为.
    14. 已知一个圆台的侧面积为,下底面半径比上底面半径大1,母线与下底面所成角的正切值为7,则该圆台的外接球(圆台的上、下底面圆周上的点均在球面上)的体积为______.
    【答案】
    【解析】设圆台的上底面半径为r,下底面半径为R,高为h,母线长为.因为母线与下底面所成角的正切值为7,所以.
    又因为.则,
    圆台的侧面积公式为,已知侧面积为,所以.
    则.又因为,则.
    设圆台外接球的半径为,球心到上底面的距离为.
    则,,
    解得.
    根据公式,求出外接球的体积公式为.
    四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤
    15. 某校为促进学生对地震知识及避震自救知识的学习,组织了《地震知识及避震自救知识》竞赛活动,对所有学生的竞赛成绩进行统计分析,制成如图所示的频率分布直方图(各区间分别为.
    (1)根据频率分布直方图,估计本次竞赛的平均成绩;(每组数据用所在区间的中点值作代表)
    (2)按人数比例用分层随机抽样的方法从竞赛成绩在和内的学生中抽取5人,再从这5人中随机抽取2人,求这2人成绩都在内的概率.
    解:(1)频率之和为1,则,解得.
    则,则平均分成绩为.
    (2)根据分层抽样,知道和内的学生比为.
    则抽取的5人中有2个来自层,设为.3个来自层,设为.
    再从这5人中随机抽取2人,总共有10种可能,分别为:.
    这2人成绩都在内的有,共3种.故所求概率为.
    16. 已知的内角的对边分别为,向,
    (1)求;
    (2)若,求的面积的最大值
    解:(1)即,
    由正弦定理角化边得,即,
    则,由于,则.
    (2),,则,即,
    由不等式知道,(当且仅当取最值),即.
    由三角形面积公式知道,(当且仅当取最值).
    故的面积的最大值为.
    17. 已知
    (1)求的值;
    (2)已知,求的值
    解:(1),运用差角公式展开,
    得,
    化简得,,
    两边平方,即,
    则,
    由于,则.
    则.,联立解得,

    (2),则,.
    .
    由于,,则,则.
    18. 如图,在四棱锥中,底面为正方形,平面平面,分别为棱的中点,.
    (1)证明:平面平面;
    (2)求二面角的大小.
    解:(1)连接,如图,
    由分别为棱的中点,
    可得,
    又,所以,
    所以四边形为平行四边形,
    所以,又平面,平面,
    所以平面,
    因为,平面,平面,
    所以平面,又,平面,
    所以平面平面.
    (2)因为平面平面,是两平面的交线,平面,
    所以平面,又平面,
    所以,又,
    以方向为轴正方向建立如图所示空间直角坐标系,则,
    所以,
    则,
    设平面的法向量,
    则,令,可得,
    设平面的法向量为,
    则,令,可得,
    所以,即,
    由图知,二面角的平面角为钝角,
    所以二面角的大小为.
    19. 已知是指数函数,且过点是定义域为的奇函数
    (1)求值;
    (2)若存在,使不等式成立,求实数的取值范围;
    (3)若函数恰有2个零点,求实数的取值范围.
    解:(1)设,函数过,代入,即,
    解得,则.
    定义域为R的奇函数,则,解得,
    则,
    由于,解得,则.
    检验:,则满足题意.
    则.
    (2),即,
    即存在,使得成立.
    由于,越大,则由指数单调性知道越大,
    则也变大,变小,变小.则在定义域内单调递减.
    即存在,使得成立. 即存在,使得.
    则对于,使得即可.
    对于, ,则.
    (3)恰有2个零点,即有两个不同根.
    即有两个不同根. 由于是定义域为R的奇函数且单调递减,
    则有两个不同根即可. 则有两个不同根即可.
    令,q与x个数一一对应,转化为有两个不同正根即可.
    满足,解得,即.
    实数的取值范围为.

    相关试卷

    2024-2025学年安徽省多校联考高二(上)开学数学试卷(含答案):

    这是一份2024-2025学年安徽省多校联考高二(上)开学数学试卷(含答案),共9页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年安徽省多校联考高二(上)开学数学试卷(含解析):

    这是一份2024-2025学年安徽省多校联考高二(上)开学数学试卷(含解析),共14页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    安徽多校联考2024-2025学年高二上学期开学考试数学试题+答案:

    这是一份安徽多校联考2024-2025学年高二上学期开学考试数学试题+答案,文件包含安徽省多校联考2024-2025学年高二上学期开学考试数学试题原卷版pdf、安徽省多校联考2024-2025学年高二上学期开学考试数学试题解析版pdf等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map