2025届四川省泸州市名校数学九年级第一学期开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)不等式8﹣4x≥0的解集在数轴上表示为( )
A.
B.
C.
D.
2、(4分)道路千万条,安全第一条,下列交通标志是中心对称图形的为( )
A.B.C.D.
3、(4分)直角坐标系中,A、B两点的横坐标相同但均不为零,则直线AB( )
A.平行于x轴B.平行于y轴C.经过原点D.以上都不对
4、(4分)下列各式能利用完全平方公式分解因式的是( )
A.B.C.D.
5、(4分)已知数据:1,2,0,2,﹣5,则下列结论错误的是( )
A.平均数为0B.中位数为1C.众数为2D.方差为34
6、(4分)在一次英语单词听写比赛中共听写了16个单词,每听写正确1个得1分,最后全体参赛同学的听写成绩统计如下表:
则听写成绩的众数和中位数分别是( ).
A.15,14B.15,15
C.16,15D.16,14
7、(4分)二次根式中,x的取值范围在数轴上表示正确的是( )
A.B.
C.D.
8、(4分)正方形ABCD中,点E、F分别在CD、BC边上,是等边三角形.以下结论:①;②;③;④EF的垂直平分线是直线AC.正确结论个数有( )个.
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点E、F分别在矩形ABCD的边BC和CD上,如果△ABE、△ECF、△FDA的面积分别刚好为6、2、5,那么矩形ABCD的面积为_____.
10、(4分)如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是_____度.
11、(4分)计算:﹣=_____.
12、(4分)将5个边长为1的正方形按照如图所示方式摆放,O1,O2,O3,O4,O5是正方形对角线的交点,那么阴影部分面积之和等于________.
13、(4分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如,3=22﹣12,5=32﹣22,7=42﹣32,8=32﹣12…,因此3,5,7,8…都是“智慧数”在正整数中,从1开始,第2018个智慧数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知直线l为x+y=8,点P(x,y)在l上且x>0,y>0,点A的坐标为(6,0).
(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;
(2)当S=9时,求点P的坐标;
(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.
15、(8分)直线过点,直线过点,求不等式的解集.
16、(8分)先化简,再求值:,且x为满足﹣3<x<2的整数.
17、(10分)已知,求的值.
18、(10分)如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任到一点P(点A除外),过点P作EF∥AB,分别交AC、BC于点E、F,作PQ∥AC,交AB于点Q,连接QE与AD相交于点G.
(1)求证:四边形AQPE是菱形.
(2)四边形EQBF是平行四边形吗?若是,请证明;若不是,请说明理由.
(3)直接写出P点在EF的何处位置时,菱形AQPE的面积为四边形EQBF面积的一半.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为_____.
20、(4分)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.
那么,其中最喜欢足球的学生数占被调查总人数的百分比为______%.
21、(4分)甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y千米与甲开车行驶的时间x小时之间的部分函数图象如图所示,当甲到达B地时,乙离B地的距离是_____.
22、(4分)如图,已知中,,点为的中点,在线段上取点,使与相似,则的长为 ______________.
23、(4分)如图,在菱形ABCD中,∠ABC=120°,E是AB边的中点,P是AC边上一动点,PB+PE的最小值是,则AB的长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).
①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1;
②以原点O为对称中心,再画出与△ABC关于原点对称的△A2B2C2,并写出点C2的坐标.
25、(10分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.
(1)求证:AF=BD.
(2)求证:四边形ADCF是菱形.
26、(12分)如图,正方形ABCD中,O是对角线AC、BD的交点,过点O作OE⊥OF,分别交AB、BC于E. F.
(1)求证:△OEF是等腰直角三角形。
(2)若AE=4,CF=3,求EF的长。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先根据不等式的基本性质求出此不等式的解集,在数轴上表示出来,再找出符合条件的选项即可.
【详解】
8﹣4x≥0
移项得,﹣4x≥﹣8,
系数化为1得,x≤1.
在数轴上表示为:
故选:C.
本题考查的是解一元一次不等式及在数轴上表示不等式的解集,解答此类题目时要注意实心圆点与空心圆点的区别.正确求出不等式的解集是解此题的关键.
2、B
【解析】
结合中心对称图形的概念求解即可.
【详解】
解:A、不是中心对称图形,本选项错误;
B、是中心对称图形,本选项正确;
C、不是中心对称图形,本选项错误;
D、不是中心对称图形,本选项错误.
故选:B.
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3、B
【解析】
平行于y轴的直线上的点的横坐标相同.由此即可解答.
【详解】
直角坐标系下两个点的横坐标相同且不为零,则说明这两点到y轴的距离相等,且在y轴的同一侧,所以过这两点的直线平行于y轴.
故选B.
本题考查坐标与图形的性质,关键是根据:两点的横坐标相同,到y轴的距离相等,过这两点的直线平行于y轴解答.
4、B
【解析】
根据完全平方公式的特点逐一判断以上选项,即可得出答案.
【详解】
(1)不符合完全平方公式的特点,故本选项错误;(2)=,故本选项正确;(3)不符合完全平方公式的特点,故本选项错误;(4)不符合完全平方公式的特点,故本选项错误。因此答案选择B.
本题考查的是利用完全平方公式进行因式分解,重点需要掌握完全平方公式的特点:首尾皆为平方的形式,中间则是积的两倍.
5、D
【解析】
根据平均数、方差的计算公式和中位数、众数的定义分别进行解答,即可得出答案.
【详解】
A.这组数据:1,2,0,2,﹣5的平均数是:(1+2+0+2-5)÷5=0,故本选项正确;
B.把这组数按从小到大的顺序排列如下:-5,0,1,2,2,可观察1处在中间位置,所以中位数为1,故本选项正确;
C.观察可知这组数中出现最多的数为2,所以众数为2,故本选项正确;
D. ,故本选项错误,
所以选D
本题考查众数,算术平均数,中位数,方差;熟练掌握平均数、方差的计算公式和中位数、众数的定义是解决本题的关键.由于它们的计算由易到难为众数、中位数、算术平方根、方差,所以考试时可按照这样的顺序对选项进行判断,例如本题前三个选项正确,直接可以选D,就可以不用计算方差了.
6、C
【解析】
根据表格中的数据可知16出现的次数最多,从而可以得到众数,一共20个数据,中位数是第10个和第11个的平均数,本题得以解决.
【详解】
由表格可得,16出现的次数最多,所以听写成绩的众数是16;
一共20个数据,中位数是第10个和第11个的平均数为5,即中位数为5,
故选:C.
考查了众数和中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.
7、D
【解析】
根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
【详解】
解:根据题意得3+x≥0,
解得:x≥﹣3,
故x的取值范围在数轴上表示正确的是.
故选:D.
本题考查了二次根式的性质,二次根式中的被开方数必须是非负数,否则二次根式无意义.
8、C
【解析】
由题意可证△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF=EC,由平角定义可求∠AED=75°,由AE=AF,EC=FC可证AC垂直平分EF,则可判断各命题是否正确.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°,
∵△AEF是等边三角形,
∴AE=AF=EF,∠EAF=∠AEF=60°,
∵AD=AB,AF=AE,
∴△ABF≌△ADE,
∴BF=DE,
∴BC−BF=CD−DE,
∴CE=CF,故①正确;
∵CE=CF,∠C=90°;
∴EF=CE,∠CEF=45°;
∴AF=CE,
∴CF=AF,故③错误;
∵∠AED=180°−∠CEF−∠AEF;
∴∠AED=75°;故②正确;
∵AE=AF,CE=CF;
∴AC垂直平分EF;故④正确.
故选:C.
本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,线段垂直平分线的判定,熟练运用这些性质和判定是解决本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20
【解析】
设AB=CD=a,AD=BC=b,根据三角形的面积依次求出BE,EC,CF,DF的长度,再根据△ADF面积为5,可列方程,可求ab的值,即可得矩形ABCD的面积.
【详解】
设AB=CD=a,AD=BC=b
∵S△ABE=6
∴AB×BE=6
∴BE=
∴EC=b﹣
∵S△EFC=2
∴EC×CF=2
∴CF=
∴DF=a﹣
∵S△ADF=5
∴AD×DF=5
∴b(a﹣)=10
∴(ab)2﹣26ab+120=0
∴ab=20或ab=6(不合题意舍去)
∴矩形ABCD的面积为20
故答案为20
此题考查了面积与等积变换的知识以及直角三角形与矩形的性质.此题难度适中,注意掌握方程思想与数形结合思想的应用.
10、65°.
【解析】
利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.
【详解】
在平行四边形ABCD中,∠A=130°,
∴∠BCD=∠A=130°,∠D=180°-130°=50°,
∵DE=DC,
∴∠ECD=(180°-50°)=65°,
∴∠ECB=130°-65°=65°.
故答案为65°.
11、
【解析】
根据二次根式的性质,进行计算即可解答
【详解】
解:﹣.
故答案为:﹣ .
此题考查二次根式的化简,解题关键在于掌握运算法则
12、1 .
【解析】
分析:连接O1A,O1B,先证明△AO1C≌△BO1D,从而可得S四边形ACO1D=S△AO1B=S正方形ABEF=,然后可求阴影部分面积之和.
详解:如图,连接O1A,O1B.
∵四边形ABEF是正方形,
∴O1A=O1B, ∠AO1B=90°.
∵∠AO1C+∠AO1D=90°, ∠BO1D+∠AO1D=90°,
∴∠AO1C=∠BO1D.
在△AO1C和△BO1D中,
∵∠AO1C=∠BO1D,
O1A=O1B,
∠O1AC=∠O1BD=45°,
∴△AO1C≌△BO1D,
∴S四边形ACO1D=S△AO1B=S正方形ABEF=,
∴阴影部分面积之和等于×4=1.
故答案为:1.
点睛:本题考查了正方形的性质,全等三角形的判定与性质,证明△AO1C≌△BO1D是解答本题的关键.
13、1693
【解析】
如果一个数是智慧数,就能表示为两个正整数的平方差,设这两个数分别m、n,设m>n,即智慧数=m1-n1=(m+n)(m-n),因为m,n是正整数,因而m+n和m-n就是两个自然数.要判断一个数是否是智慧数,可以把这个数分解因数,分解成两个整数的积,看这两个数能否写成两个正整数的和与差.
【详解】
解:1不能表示为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数1k+1,有1k+1=(k+1)1-k1(k=1,1,…).所以大于1的奇正整数都是“智慧数”.
对于被4整除的偶数4k,有4k=(k+1)1-(k-1)1(k=1,3,…).
即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.
对于被4除余1的数4k+1(k=0,1,1,3,…),设4k+1=x1-y1=(x+y)(x-y),其中x,y为正整数,
当x,y奇偶性相同时,(x+y)(x-y)被4整除,而4k+1不被4整除;
当x,y奇偶性相异时,(x+y)(x-y)为奇数,而4k+1为偶数,总得矛盾.
所以不存在自然数x,y使得x1-y1=4k+1.即形如4k+1的数均不为“智慧数”.
因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.
因为1017=(1+3×671),4×(671+1)=1691,
所以1693是第1018个“智慧数”,
故答案为:1693.
本题考查平方差公式,有一定的难度,主要是对题中新定义的理解与把握.
三、解答题(本大题共5个小题,共48分)
14、(1)、y=24﹣3x(0<x<8);(2)、P(5,3);(3)、(6.4,1.6).
【解析】
试题分析:(1)根据三角形的面积公式即可直接求解;
(2)把S=9代入,解方程即可求解;
(3)点O关于l的对称点B,AB与直线x+y=8的交点就是所求.
试题解析:(1)如图所示:
∵点P(x,y)在直线x+y=8上,
∴y=8﹣x,
∵点A的坐标为(6,0),
∴S=3(8﹣x)=24﹣3x,(0<x<8);
(2)当24﹣3x=9时,x=5,即P的坐标为(5,3).
(3)点O关于l的对称点B的坐标为(8,8),设直线AB的解析式为y=kx+b,
由8k+b=8,6k+b=0,解得k=4,b=﹣24,
故直线AB的解析式为y=4x﹣24,
由y=4x﹣24,x+y=8解得,x=6.4,y=1.6,
点M的坐标为(6.4,1.6).
考点: 轴对称-最短路线问题;一次函数图象上点的坐标特征.
15、
【解析】
将代入,可解得k的值,将代入,可解得m的值,再将k和m的值代入不等式,解不等式即可
【详解】
解:将代入得:,解得:k=1;
将代入得:,解得:;
∴,
则可得
解得
故答案为:
本题考查待定系数法求一次函数的解析式以及不等式的解法,,比较简单,应熟练掌握
16、-5
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3
由于x≠0且x≠1且x≠﹣2,
所以x=﹣1,
原式=﹣2﹣3=﹣5
本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
17、
【解析】
先计算出a+b,b-a以及ab的值,再把所求代数式变形为,然后代值计算即可.
【详解】
解:∵,
∴,
∴原式=.
本题二次根式的化简求值,通过先计算a+b,b-a以及ab的值,变形所求代数式,从而使计算变得简便.
18、(1)见解析;(2)结论:四边形EQBF是平行四边形.见解析;(3)当P为EF中点时,S菱形AEPQ=S四边形EFBQ.
【解析】
(1)先证出四边形AEPQ为平行四边形,关键是找一组邻边相等,由AD平分∠BAC和PE∥AQ可证∠EAP=∠EPA,得出AE=EP,即可得出结论;
(2)只要证明EQ∥BC,EF∥AB即可;
(3)S菱形AEPQ=EP•h,S平行四边形EFBQ=EF•h,若菱形AEPQ的面积为四边形EFBQ面积的一半,则EP=EF,因此P为EF中点时,S菱形AEPQ=S四边形EFBQ.
【详解】
(1)证明:∵EF∥AB,PQ∥AC,
∴四边形AEPQ为平行四边形,
∴∠BAD=∠EPA,
∵AB=AC,AD平分∠CAB,
∴∠CAD=∠BAD,
∴∠CAD=∠EPA,
∴EA=EP,
∴四边形AEPQ为菱形.
(2)解:结论:四边形EQBF是平行四边形.
∵四边形AQPE是菱形,
∴AD⊥EQ,即∠AGQ=90°,
∵AB=AC,AD平分∠BAC,
∴AD⊥BC即∠ADB=90°,
∴EQ∥BC
∵EF∥QB,
∴四边形EQBF是平行四边形.
(3)解:当P为EF中点时, S菱形AEPQ=S四边形EFBQ
∵四边形AEPQ为菱形,
∴AD⊥EQ,
∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴EQ∥BC,
又∵EF∥AB,
∴四边形EFBQ为平行四边形.
作EN⊥AB于N,如图所示:
∵P为EF中点
则S菱形AEPQ=EP•EN=EF•EN=S四边形EFBQ.
此题主要考查了菱形的判定与性质、平行四边形的判定与性质、等腰三角形的判定与性质;熟练掌握等腰三角形的性质,证明四边形是平行四边形是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.
【详解】
解:设AC与BD的交点为O
∵四边形ABCD是平行四边形
∴AD=BC=2,AD∥BC
AO=CO=1,BO=DO
∵AC⊥BC
∴BO==
∴BD=2.
故答案为2.
本题考查了平行四边形的性质和勾股定理,关键是灵活运用平行四边形的性质解决问题.
20、1
【解析】
依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.
【详解】
解:∵被调查学生的总数为10÷20%=50人,
∴最喜欢篮球的有50×32%=16人,
则最喜欢足球的学生数占被调查总人数的百分比= ×100%=1%.
故答案为:1.
本题考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
21、1
【解析】
结合题意分析函数图象:线段OC对应甲乙同时从A地出发到A返回前的过程,此过程为1小时;线段CD对应甲返回走到与乙相遇的过程(即甲的速度大于乙的速度);线段DE对应甲与乙相遇后继续返回走至到达A地的过程,因为速度相同,所以甲去和回所用时间相同,即x=2时,甲回到A地,此时甲乙相距120km,即乙2小时行驶120千米;线段EF对应甲从A地重新出发到追上乙的过程,即甲用(5﹣2)小时的时间追上乙,可列方程求出甲此时的速度,进而求出甲到达B地的时刻,再求出此时乙所行驶的路程.
【详解】
解:∵甲出发到返回用时1小时,返回后速度不变,
∴返回到A地的时刻为x=2,此时y=120,
∴乙的速度为60千米/时,
设甲重新出发后的速度为v千米/时,列得方程:
(5﹣2)(v﹣60)=120,
解得:v=100,
设甲在第t小时到达B地,列得方程:
100(t﹣2)=10
解得:t=6,
∴此时乙行驶的路程为:60×6=360(千米),
乙离B地距离为:10﹣360=1(千米).
故答案为:1.
本题考查了一次函数与一元一次方程的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.
22、或
【解析】
根据题意与相似,可分为两种情况,△AMN∽△ABC或者△AMN∽△ACB,两种情况分别列出比例式求解即可
【详解】
∵M为AB中点,∴AM=
当△AMN∽△ABC,有,即,解得MN=3
当△AMN∽△ACB,有,即,解得MN=
故填3或
本题主要考查相似三角形的性质,解题关键在于要对题目进行分情况讨论
23、1
【解析】
分析:找出B点关于AC的对称点D,连接DE,则DE就是PE+PB的最小值,进而可求出AB的值.
详解:连接DE交AC于P,连接BD,BP,
由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,
∴PE+PB=PE+PD=DE,
即DE就是PE+PB的最小值,
∵∠BAD=60°,AD=AB,
∴△ABD是等边三角形,
∵AE=BE,
∴DE⊥AB(等腰三角形三线合一的性质)
在Rt△ADE中,DE=,
∴AD1=4,
∴AD=AB=1.
点睛:本题主要考查轴对称-最短路线问题和菱形的性质的知识点,解答本题的关键,此题是道比较不错的习题.
二、解答题(本大题共3个小题,共30分)
24、①见解析;②见解析,点C2坐标为(﹣4,1).
【解析】
①根据平移规律得出对应点位置即可;
②利用关于原点对称点的坐标性质得出对应点位置进而得出答案.
【详解】
①如图所示,△A1B1C1即为所求.
②如图所示,△A2B2C2即为所求,点C2坐标为(﹣4,1).
此题主要考查了平移变换以及旋转变换和三角形面积等知识,根据题意得出对应点位置是解题关键.
25、(1)见解析;(2)见解析.
【解析】
(1)由“AAS”可证△AFE≌△DBE,从而得AF=BD
(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF是平行四边形,由直角三角形的性质的AD=DC,即可证明四边形ADCF是菱形。
【详解】
(1)∵AF∥BC,
∴∠AFE=∠DBE
∵△ABC是直角三角形,AD是BC边上的中线,E是AD的中点,
∴AE=DE,BD=CD
在△AFE和△DBE中,
,
∴△AFE≌△DBE(AAS))
∴AF=BD
(2)由(1)知,AF=BD,且BD=CD,
∴AF=CD,且AF∥BC,
∴四边形ADCF是平行四边形
∵∠BAC=90°,D是BC的中点,
∴AD=BC=DC
∴四边形ADCF是菱形
本题考查了菱形的判定、全等三角形的判定与性质、直角三角形的性质。证明AD=DC是解题的关键。
26、(1)见解析;(2)5.
【解析】
(1)根据正方形的性质可得∠ABO=∠ACF=45°,OB=OC,∠BOC=90°,再根据同角的余角相等求出∠EOB=∠FOC,然后利用“角边角”证明△BEO和△CFO全等,根据全等三角形对应边相等可得OE=OF,从而得证;
(2)根据全等三角形对应边相等可得BE=CF,再根据正方形的四条边都相等求出AE=BF,再利用勾股定理列式进行计算即可得解.
【详解】
(1)证明:∵四边形ABCD为正方形,
∴∠ABO=∠ACF=45∘,OB=OC,∠BOC=90∘,
∴∠FOC+∠BOF=90∘,
又∵OE⊥OF,
∴∠EOF=90∘,
∴∠EOB+∠BOF=90∘,
∴∠EOB=∠FOC,
在△BEO和△CFO中,
,
∴△BEO≌△CFO(ASA),
∴OE=OF,
又∵∠EOF=90∘,
∴△DEF是等腰直角三角形;
(2)解∵△BEO≌△CFO(已证),
∴BE=CF=3,
又∵四边形ABCD是正方形,
∴AB=BC,
∴AB−BE=BC−CF,
即AE=BF=4,
在Rt△BEF中,EF= = =5.
此题考查全等三角形的判定与性质,正方形的性质,解题关键在于得到∠ABO=∠ACF=45°,OB=OC,∠BOC=90°
题号
一
二
三
四
五
总分
得分
成绩(分)
12
13
14
15
16
人数(个)
1
3
4
5
7
类别
A
B
C
D
E
F
类型
足球
羽毛球
乒乓球
篮球
排球
其他
人数
10
4
6
2
2025届四川省泸州市江阳区数学九上开学经典模拟试题【含答案】: 这是一份2025届四川省泸州市江阳区数学九上开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年云南省普洱市名校数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2024年云南省普洱市名校数学九年级第一学期开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年云南省曲靖市名校九年级数学第一学期开学经典模拟试题【含答案】: 这是一份2024年云南省曲靖市名校九年级数学第一学期开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。