2025届西藏拉萨达孜县九上数学开学统考模拟试题【含答案】
展开这是一份2025届西藏拉萨达孜县九上数学开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,菱形ABCD的对角线AC、BD相交于点O.若周长为20,BD=8,则AC的长是( )
A.3B.4C.5D.6
2、(4分)的算术平方根是( )
A.B.C.D.
3、(4分)若点(﹣2,y1)、(﹣1,y2)和(1,y3)分别在反比例函数y=﹣的图象上,则下列判断中正确的是( )
A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y1
4、(4分)下列命题:①对顶角相等;②两直线平行,同位角相等;③全等三角形对应角相等;⑤菱形是对角线互相垂直的四边形. 它们的逆命题中,不成立的个数有( )
A.1个B.2个C.3个D.4个
5、(4分)如图,菱形中,,点是边上一点,占在上,下列选项中不正确的是( )
A.若,则
B.若, 则
C.若,则的周长最小值为
D.若,则
6、(4分)已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
7、(4分)某市招聘老师的笔试和面试的成绩均按百分制计,并且分别按40%和60%来计算综合成绩.王老师本次招聘考试的笔试成绩为90分,面试成绩为85分,经计算他的综合成绩是( )
A.85分B.87分C.87.5分D.90分
8、(4分)如图,四边形中,,,于,于,若,的面积为,则四边形的边长的长为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=_____.
10、(4分)如图,在△ABC中,AB=5,BC=7,EF是△ABC的中位线,则EF的长度范围是________.
11、(4分)一次函数y=﹣x﹣3与x轴交点的坐标是_____.
12、(4分)关于一元二次方程有两个相等的实数根,则的值是__________.
13、(4分)已知为实数,若有正数b,m,满足,则称是b,m的弦数.若且为正数,请写出一组,b, m使得是b,m的弦数:_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,AD平分∠BAC,AB+BD=AC,∠BAC=75°,则∠C的度数为____.
15、(8分)一家水果店以每千克2元的价格购进某种水果若干千克,然后以每千克4元的价格出售,每天可售出100千克,通过调查发现,这种水果每千克的售价每降低1元,每天可多售出200千克.
(1)若将这种水果每千克的售价降低元,则每天销售量是多少千克?(结果用含的代数式表示)
(2)若想每天盈利300元,且保证每天至少售出260千克,那么水果店需将每千克的售价降低多少元?
16、(8分)心理学家研究发现,一般情况下,一节课分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为 理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数随时间(分钟)的变化规律如图所示(其中都为线段)
(1)分别求出线段和的函数解析式;
(2)开始上课后第分钟时与第分钟时相比较,何时学生的注意力更集中?
(3)一道数学竞赛题,需要讲分钟,为了效果较好,要求学生的注意力指标数最低达到那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
17、(10分)如图,矩形ABCD中,AB=4,BC=3,以BD为腰作等腰△BDE交DC的延长线于点E,求BE的长.
18、(10分)如图,一次函数y= x+6的图象与x轴、y轴分别交于A、B两点,点C与点A关于y轴对称.动点P、Q分别在线段AC、AB上(点P与点A、C不重合),且满足∠BPQ=∠BAO.
(1)求点A、 B的坐标及线段BC的长度;
(2)当点P在什么位置时,△APQ≌△CBP,说明理由;
(3)当△PQB为等腰三角形时,求点P的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在一次射击训练中,某位选手五次射击的环数分别为6,9,8,8,9,则这位选手五次射击环数的方差为______.
20、(4分)如图,在Rt△ABC与Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,∠A=50°,则∠DFE= ________
21、(4分)如图在菱形ABCD中,∠A=60°,AD=,点P是对角线AC上的一个动点,过点P作EF⊥AC交AD于点E,交AB于点F,将△AEF沿EF折叠点A落在G处,当△CGB为等腰三角形时,则AP的长为__________.
22、(4分)如图,ABCD的对角线AC,BD交于点O,M是CD的中点,连接OM,若OM=2,则BC的长是______________.
23、(4分)某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了参加“仙桃市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(l)班 86,85,77,92,85;八(2)班 79,85,92,85,1.通过数据分析,列表如下:
(1)直接写出表中a,b,c,d的值;
(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.
25、(10分)先化简:,再从中选取一个你认为合适的整数代入求值.
26、(12分)某校从初二(1)班和(2)班各选拔10名同学组成甲队和乙队,参加数学竞赛活动,此次竞赛共有10道选择题,答对8题(含8题)以上为优秀,两队选手答对题数统计如下:
(1)上述表格中,a= ,b= ,c= ,m= .
(2)请根据平均数和众数的意义,对甲、乙两队选手进行评价.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据菱形性质得出AB=BC=CD=AD,AC⊥BD,BO=OB,AO=OC,求出OB,根据勾股定理求出OA,即可求出AC.
【详解】
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,AC⊥BD,BO=OB,AO=OC,
∵菱形的周长是20,
∴DC=×20=5,
∵BD=8,
∴OD=4,
在Rt△DOC中,OD==3,
∴AC=2OC=1.
故选:D.
本题考查了菱形性质和勾股定理,注意:菱形的对角线互相垂直平分,菱形的四条边相等.
2、B
【解析】
根据算术平方根的概念求解即可.
【详解】
解:4的算术平方根是2,故选B.
本题考查了算术平方根的概念,属于基础题型,熟练掌握算术平方根的定义是解题的关键.
3、B
【解析】
先根据反比例函数中,k2+1>0,可知-( k2+1)<0,判断出函数图像所在的象限及增减性,再根据各点横坐标的特点即可得出结论.
【详解】
解:∵反比例函数的,-( k2+1)<0,
∴函数图像的两个分支分别位于第二、四象限,且在每一象限内y随x的增大而增大.
∵-2<-1<0,
∴点、位于第二象限,且在第二象限内y随x的增大而增大,
∴y2>y1>0,
又∵1>0,
∴点位于第四象限,
∴y3<0,
∴y3
本题考查的是反比例函数图像上的点的坐标特点,熟知反比例函数图像上各点坐标一定适合此函数的解析式是解题的关键.
4、C
【解析】
分别写出各命题的逆命题:相等的角为对顶角;同位角相等,两直线平行;对应角相等,两三角形全等;对角线互相垂直的四边形为菱形;然后再分别利用举反例、平行线的判定以及菱形的判定方法依次进行判断.
【详解】
“对顶角相等”的逆命题为“相等的角为对顶角”,所以此逆命题为假命题;
“两直线平行,同位角相等”的逆命题为“同位角相等,两直线平行”,此逆命题为真命题;
“全等三角形对应角相等”的逆命题为“对应角相等的两个三角形全等”,此逆命题为假命题;
“菱形的对角线互相垂直”的逆命题为“对角线互相垂直的四边形为菱形”,此命题为假命题.
因此,上述逆命题中不成立的的有3个.
故选:C.
本题考查了命题:判断事物的语句叫命题.正确的命题称为真命题,错误的命题称为假命题;交换命题的题设与结论得到的命题为原命题的逆命题.
5、D
【解析】
A.正确,只要证明即可;
B.正确,只要证明进而得到是等边三角形,进而得到结论;
C.正确,只要证明得出是等边三角形,因为的周长为,所以等边三角形的边长最小时,的周长最小,只要求出的边长最小值即可;
D.错误,当时,,由此即可判断.
【详解】
A正确,理由如下:
都是等边三角形,
B正确,理由如下:
是等边三角形,
同理
是等边三角形,
C正确,理由如下:
是等边三角形,
的周长为:
,
等边三角形边长最小时,的周长最小,
当时,DE最小为,
的周长最小值为.
D错误,当时,,此时时变化的不是定值,故错误.
故选D.
本题主要考查全等的判定的同时,结合等边三角形的性质,涉及到最值问题,仔细分析图形,明确图形中的全等三角形是解决问题的关键.
6、C
【解析】
先根据时,,得到随的增大而减小,所以的比例系数小于,那么,解不等式即可求解.
【详解】
时,,
随的增大而减小,函数图象从左往右下降,
,
,
,
即函数图象与轴交于正半轴,
这个函数的图象不经过第三象限.
故选:.
本题考查一次函数的图象性质:当,随的增大而增大;当时,随的增大而减小.
7、B
【解析】
根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.
【详解】
解:王老师的综合成绩为:90×40%+85×60%=87(分),
故选:B.
此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.
8、A
【解析】
先证明△ACD≌△BEA,在根据△ABC的面积为8,求出BE,然后根据勾股定理即可求出AB.
【详解】
解:∵BE⊥AC,CD⊥AC,
∴∠ACD=∠BEA=90°,
∴∠CDB+∠DCA=90°,
又∵∠DAB=∠DAC+∠BAC=90°
在△ACD和△AEB中,
∴△ACD≌△BEA(AAS)
∴AC=BE
∵△ABC的面积为8,
∴,
解得BE=4,
在Rt△ABE中,
.
故选择:A.
本题主要考查了三角形全等和勾股定理的知识点,熟练三角形全等的判定和勾股定理是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、25°.
【解析】
在Rt△ABC中,∠BAC=65°,所以∠ABC=90°-65°=25°.又AB∥CD,所以∠BCD=∠ABC=25°.
10、1<EF<6
【解析】
∵在△ABC中,AB=5,BC=7,
∴7-5<AC<7+5,
即2<AC<12.
又∵EF是△ABC的中位线,
∴EF=AC
∴1<EF<6.
11、(﹣3,0).
【解析】
根据函数与x轴交点的纵坐标为0,令y=0,得到函数与x轴交点的横坐标,即可得到交点坐标.
【详解】
解:当y=0时,-x-3=0,
解得,x=-3,
与x轴的交点坐标为(-3,0).
本题考查了一次函数图象上点的坐标特征,知道x轴上的所有点的纵坐标为0是解题的关键.
12、16
【解析】
根据根判别式得出答案.
【详解】
因为关于一元二次方程有两个相等的实数根,
所以
解得k=16
故答案为:16
考核知识点:根判别式.理解根判别式的意义是关键.
13、(答案不唯一)
【解析】
根据题中提供的弦数的定义判断即可.
【详解】
解:,
是4,3的弦数,
故答案为:(答案不唯一)
本题考查了平方差公式,正确理解题中的新定义是解本题的关键.
三、解答题(本大题共5个小题,共48分)
14、35°.
【解析】
先在AC上截取AE=AB,连接DE.想办法求出∠B:∠C的值即可解决问题.
【详解】
在AC上截取AE=AB,连接DE
∵∠BAD=∠DAE,AD=AD
∴△ABD≌△AED(SAS),
∴∠B=∠AED,BD=DE
又∵AB+BD=AC,
∴CE=BD=DE
∴∠C=∠EDC,
∴∠B=∠AED=2∠C
∴∠B:∠C=2:1,
∵∠BAC=75°,
∴∠B+∠C=180°﹣75°=105°,
∴∠B=70°,∠C=35°,
故答案为35°.
本题考查了角平分线的性质,全等三角形的判定和性质等知识,以及三角形的外角等于不相邻的两个内角之和.作出辅助线是解答本题的关键.
15、(1)每天销售量是千克;(2)水果店需将每千克的售价降低1元.
【解析】
(1)销售量原来销售量下降销售量,据此列式即可;
(2)根据销售量每千克利润总利润列出方程求解即可.
【详解】
解:(1)每天的销售量是(千克).
故每天销售量是千克;
(2)设这种水果每斤售价降低元,根据题意得:,
解得:,,
当时,销售量是;
当时,销售量是(斤.
每天至少售出260斤,
.
答:水果店需将每千克的售价降低1元.
考查了一元二次方程的应用,本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量.第二问,根据售价和销售量的关系,以利润作为等量关系列方程求解.
16、(1)线段AB的解析式为:y1=2x+1;线段CD的解析式为:;(2)第30分钟注意力更集中;(3)能.
【解析】
(1)分别从图象中找到其经过的点,利用待定系数法求得线段和的解析式即可;
(2)根据上题求出的AB和CD的函数表达式,再分别求第5分钟和第30分钟的注意力指数,最后比较判断;
(3)分别求出注意力指数为38时的两个时间,再将两时间之差和17比较,大于17则能讲完,否则不能.
【详解】
解:(1)设线段AB所在的直线的解析式为y1=k1x+1,
把B(10,40)代入得,k1=2,
∴线段AB的解析式为:y1=2x+1.
设线段CD所在直线的解析式为
把C(25,40),D(40,25)代入得:,解得
∴线段CD的解析式为:
(2)当x1=5时,y1=2×5+1=30,
当x2=30时,y2=35
∴y1<y2
∴第30分钟注意力更集中;
(3)令y1=38,
∴38=2x+1,
∴x1=9
令y2=38,
∴
27-9=18>17
∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.
主要考查了一次函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.
17、.
【解析】
利用勾股定理求出BD,可得DE=BD=5,在Rt△BCE中,利用勾股定理求出BE即可.
【详解】
解:∵四边形ABCD是矩形,
∴AB=DC=4,∠BCD=90°,
∴DE=BD==5,
∴CE=DE﹣CD=1,
在Rt△BCE中,BE=,
本题考查矩形的性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
18、A(-4,0),B(0,3),BC=1;(1,0);(1,0)或(,0).
【解析】
试题分析:根据函数解析式和勾股定理求出点A和点B的坐标以及BC的长度;根据全等的性质得出点P的坐标;本题分PQ=PB,BQ=BP乙BQ=PQ三种情况分别进行计算得出点P的坐标.
试题解析:(1)点A坐标是(-4,0),点B的坐标(0,3),BC=1.
(2)点P在(1,0)时
(3)i)当PQ=PB时,△APQ≌△CBP, 由(1)知此时点P(1,0)
ii)当BQ=BP时,∠BQP=∠BPQ ∠BQP是△APQ的外角,∠BQP>∠BAP,又∠BPQ=∠BAO
∴这种情况不可能
iii)当BQ=PQ时,∠QBP=∠QPB 又∠BPQ=∠BAO,∴∠QBP=∠BAO,则AP=4+x,BP=
∴ 4+x=,解得x=,此时点P的坐标为:(,0)
考点:一次函数的应用
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.1
【解析】
分析:先求出平均数,再运用方差公式S1= [(x1-)1+(x1-)1+…+(xn-)1],代入数据求出即可.
详解:解:五次射击的平均成绩为=(6+9+8+8+9)=8,
方差S1=[(6﹣8)1+(9﹣8)1+(8﹣8)1+(8﹣8)1+(9﹣8)1]=1.1.
故答案为1.1.
点睛: 本题考查了方差的定义.一般地设n个数据,x1,x1,…xn的平均数为,则方差S1= [(x1-)1+(x1-)1+…+(xn-)1],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
20、40°
【解析】
根据HL可证Rt△ABC≌Rt△DEF,由全等三角形的性质可得∠EDF=∠A=50°,即可求解.
【详解】
∵△ABC和△DEF是直角三角形且AC=DF,AB=DE,
∴△ABC≌△DEF.
∵∠A=50°,
∴∠EDF=∠A=50°,
∵△DEF是直角三角形,
∴∠EDF+∠DFE=90°.
∵∠EDF=50°,
∴∠DFE=90°-50°=40°.
故答案为40°.
本题主要考查全等三角形的性质与判定,以及直角三角形两个锐角互余,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
21、1或.
【解析】
分两种情形①CG=CB,②GC=GB,分别求解即可解决问题.
【详解】
在菱形ABCD中,∵∠A=60°,AD=,
∴AC=3,
①当CG=BC=时,AG=AC=CG=3-,
∴AP=AG=.
②当GC=GB时,易知GC=1,AG=2,
∴AP=AG=1,
故答案为1或.
本题考查翻折变换、等腰三角形的性质、勾股定理、菱形的性质等知识,解题的关键是学会用分类讨论的思想思考问题
22、1
【解析】
证明是的中位线即可求解.
【详解】
解:四边形是平行四边形,
,
是中点,
,
∴是的中位线,
,
故答案为:1.
本题考查平行四边形的性质、三角形中位线定理等知识,解题的关键是根据平行四边形性质判断出是的中位线.
23、1.
【解析】
根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.
【详解】
解:将数据从小到大重新排列为:5、6、1、1、10、10,
所以这组数据的中位数为=1.
故答案为:1.
本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.
二、解答题(本大题共3个小题,共30分)
24、 (1)a=86,b=2,c=2,d=22.8;(2) 八(2)班前5名同学的成绩较好,理由见解析
【解析】
(1)根据平均数、中位数、众数的概念解答, 根据方差计算公式,求出八(1)班的方差即可;
(2)先根据方差计算公式,求出八(1)班的方差,结合平均数、中位数、众数与方差的意义求解即可;
【详解】
(1)八(2)班的平均分a=(79+2+92+2+1)÷5=86,
将八(1)班的前5名学生的成绩按从小到大的顺序排列为:77,2,2,86,92,第三个数是2,所以中位数b=2,
2出现了2次,次数最多,所以众数c=2.
八(1)班的方差d=[(86-2)2+(2-2)2+(77-2)2+(92-2)2+(2-2)2]÷5=22.8;
故答案为86,2,2,22.8;
(2)∵由数据可知,两班成绩中位数,众数相同,而八(2)班平均成绩更高,且方差更小,成绩更稳定,
∴八(2)班前5名同学的成绩较好;
考查方差、平均数、众数和中位数,平均数表示一组数据的平均程度.一组数据中出现次数最多的数据叫做众数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
25、;当时,原式或当时,原式(任选其一即可).
【解析】
先根据分式的各个运算法则化简,然后从x的取值范围中选取一个使原分式有意义的值代入即可.
【详解】
解:原式
.
∵的整数有-4,-3,-2,-1,又根据分式的有意义的条件,,3和-1.
∴取-4或-2.
当时,原式.
当时,原式.
此题考查的是分式的化简求值题,掌握分式的各个运算法则和分式有意义的条件是解决此题的关键.
26、(1)8,8,7,;(2)见解析.
【解析】
(1)根据表格中的数据可以求得a、b、c、m的值;
(2)根据表格中的数据可以从平均数和众数的意义,对甲、乙两队选手进行评价.
【详解】
解:(1)平均数.
中位数:共有10名同学,中位数为第5、第6的平均数,即b=8;
众数c=7,优秀率;
(2)甲乙两队的平均数都为8,说明两队的平均水平相同,甲队的众数为8,乙队的众数为7,说明出现人数最多的题数中,甲队大于乙队,若仅从平均数和众数分析,甲队优于乙队.
本题考查方差、加权平均数、中位数、众数,解答本题的关键是明确题意,求出a、b、c、m的值,知道方差、加权平均数、中位数、众数的含义.
题号
一
二
三
四
五
总分
得分
批阅人
答对题数
5
6
7
8
9
10
平均数()
甲队选手
1
0
1
5
2
1
8
乙队选手
0
0
4
3
2
1
a
中位数
众数
方差(s2)
优秀率
甲队选手
8
8
1.6
80%
乙队选手
b
c
1.0
m
相关试卷
这是一份2024-2025学年西藏西藏达孜县九年级数学第一学期开学检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年拉萨市九上数学开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年西藏拉萨达孜县数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图,已知A等内容,欢迎下载使用。