2025届宜昌市重点中学九上数学开学调研试题【含答案】
展开
这是一份2025届宜昌市重点中学九上数学开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)用配方法解方程,变形后的结果正确的是( )
A.B.C.D.
2、(4分)不等式的解集在数轴上表示为( )
A.B.C.D.
3、(4分)如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组的解集是( )
A.B.C.D.
4、(4分)如图,四边形 ABCD 中,AC=a,BD=b,且 AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有( )
①四边形A2B2C2D2是矩形;
②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长是
④四边形AnBnCnDn的面积是
A.①②③B.②③④C.①②D.②③
5、(4分)已知点A(﹣2,a),B(﹣1,b),C(3,c)都在函数y=﹣的图象上,则a、b、c的大小关系是( )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b
6、(4分)若二次根式有意义,则a的取值范围是( )
A.a≥2 B.a≤2 C.a>2 D.a≠2
7、(4分)下列各式中计算正确的是( )
A.B.C.D.
8、(4分)方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是( )
A.1,2,3B.1,2,﹣3C.1,﹣2,3D.﹣1,﹣2,3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,把一个正方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为的菱形,剪口与折痕所成的角的度数应为______或______.
10、(4分)计算: =______________
11、(4分)若平行四边形中相邻两个内角的度数比为1:3,则其中较小的内角是__________度.
12、(4分)设函数与的图象的交点坐标为,则的值为__________.
13、(4分)通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5 m的地方作为测量部位.某树栽种时的树围为5 cm,以后树围每年增长3 cm.假设这棵数生长x年其树围才能超过2.4 m.列满足x的不等关系:__________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知四边形ABCD,请你作出一个新图形,使新图形与四边形ABCD的相似比为2:1,用圆规、直尺作图,不写作法,但要保留作图痕迹.
15、(8分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.
(1)求证:四边形PMEN是平行四边形;
(2) 当AP为何值时,四边形PMEN是菱形?并给出证明。
16、(8分)已知为原点,点及在第一象限的动点,且,设的面积为.
(1)求关于的函数解析式;
(2)求的取值范围;
(3)当时,求点坐标;
(4)画出函数的图象.
17、(10分)如图,四边形中,,将绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到.
(1)请求出旋转角的度数;
(2)请判断与的位置关系,并说明理由;
(3)若,,试求出四边形的对角线的长.
18、(10分)计算:
(1)
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:3﹣的结果是_____.
20、(4分)如图所示,为了安全起见,要为一段高5米,斜边长13米的楼梯上红地毯,则红地毯至少需要________米长。
21、(4分)在重庆八中“青春飞扬”艺术节的钢琴演奏比赛决赛中,参加比赛的10名选手成绩统计如图所示,则这10名学生成绩的中位数是___________.
22、(4分)平行四边形ABCD中,∠ABC的平分线将AD边分成的两部分的长分别为2和3,则平行四边形ABCD的周长是
_____.
23、(4分)某企业两年前创办时的资金为1000万元,现在已有资金1210万元,设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,高速公路的同一侧有A、B两城镇,它们到高速公路所在直线MN的距离分别为AA′=2 km,BB′=4 km,且A′B′=8 km.
(1)要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小.请在图中画出P的位置,并作简单说明.
(2)求这个最短距离.
25、(10分)如图,在Rt△ABC中,∠C=90°,AC=16,BC=12,AB的垂直平分线分别交AB、AC于点D、E.求AB、EC的长.
26、(12分)如图,中,是边上一点,,,,点,分别是,边上的动点,且始终保持.
(1)求的长;
(2)若四边形为平行四边形时,求的周长;
(3)将沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,求线段的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
方程移项后,配方得到结果,即可作出判断.
【详解】
解:方程移项得:x2-8x=-9,配方得:x2-8x+16=7,即(x-4)2=7,
故选:A.
此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.
2、A
【解析】
先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.
【详解】
解不等式得:x⩽3,
所以在数轴上表示为
故选A.
本题考查在数轴上表示不等式的解集,解题的关键是掌握在数轴上表示不等式的解集.
3、A
【解析】
由于一次函数y1同时经过A、P两点,可将它们的坐标分别代入y1的解析式中,即可求得k、b与m的关系,将其代入所求不等式组中,即可求得不等式的解集.
【详解】
由于直线y1=kx+b过点A(0,2),P(1,m),
则有:
解得 .
∴直线y1=(m−2)x+2.
故所求不等式组可化为:
mx>(m−2)x+2>mx−2,
不等号两边同时减去mx得,0>−2x+2>−2,
解得:1240.
本题主要考查由实际问题抽象出一元一次不等式,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
根据新图形与四边形ABCD的相似比为2:1,连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD =DF,BC =CG,即可得出所画图形.
【详解】
解:如图所示.
连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD =DF,BC =CG,连接EF,FG,四边形BEFG即所画图形.
本题考查相似变换的性质,根据相似比得出BE、BF、BG与BA、BD、BC的关系是解决问题的关键.
15、(1)证明见解析;(2)当PA=5时,四边形PMEN为菱形,理由见解析.
【解析】
分析:(1)用三角形的中位线定理证明四边形PMEN的两组对边分别平行;(2)由(1)得四边形PMEN是平行四边形,只需证PM=PN,即PC=PD,故要证△APD≌△BPC.
详解:(1)∵M,E分别为PD,CD的中点,∴ME∥PC,
同理可证:ME∥PD,
∴四边形PMEN为平行四边形;
(2)当PA=5时,四边形PMEN为菱形.
理由:∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,
∵AP=5,AB=CD=10,∴AP=BP,
在△APD和△BPC中,
AP=BP,∠A=∠B,AD=BC,
∴△APD≌△BPC(SAS),∴PD=PC,
∵M,N,E分别是PD,PC,CD的中点,
∴EN=PM=PD,PN=EM=PC,∴PM=EM=EN=PN,
∴四边形PMEN是菱形.
点睛:本题考查了平行四边形,菱形的判定和矩形的性质,三角形的中位定理反应了两条线段之间的数量关系与位置关系,所以,当题中有多个中点时,常常考虑用三角形的中位线来解题.
16、(1)S=−4x+48;(2)0<x<12;(3)P(1,3);(4)见解析.
【解析】
(1)根据三角形的面积公式即可得出结论;
(2)根据(1)中函数关系式及点P在第一象限即可得出结论;
(3)把S=12代入(1)中函数关系即可得出x的值,进而得出y的值;
(4)利用描点法画出函数图象即可.
【详解】
解:(1)∵A点和P点的坐标分别是(8,0)、(x,y),
∴S=×8×y=4y.
∵x+y=12,
∴y=12−x.
∴S=4(12−x)=48−4x,
∴所求的函数关系式为:S=−4x+48;
(2)由(1)得S=−4x+48>0,
解得:x<12;
又∵点P在第一象限,
∴x>0,
综上可得x的取值范围为:0<x<12;
(3)∵S=12,
∴−4x+48=12,
解得x=1.
∵x+y=12,
∴y=12−1=3,
即P(1,3);
(4)∵函数解析式为S=−4x+48,
∴函数图象是经过点(12,0)(0,48)但不包括这两点的线段.
所画图象如图:
本题考查的是一次函数的应用,根据题意得到函数关系式,并熟知一次函数的图象和性质是解答此题的关键.
17、 (1)旋转角的度数为 ; (2),理由见解析;(3).
【解析】
(1)根据旋转的性质可得:AC=BC,从而得到,再由三角形内角和得到∠ACB=,即为旋转的角度;
(2)由旋转的性质可得,从而得到,由对顶角相等得,从而得到,即可得出结论;
(3) 连接,先证明△CDE是等腰直角三角形,再在Rt△ADE中,求出AE即可解决问题.
【详解】
(1)∵将绕点顺时针旋转得到
∴
∴,
又∵,
∴,
∴
故旋转角的度数为
(2).理由如下:
在中,
∴
∵
∴
即
又∵
∴
∴
∴.
(3)如图,连接,
由旋转图形的性质可知
,旋转角
∴
∵,
∴
在中,
∴,
∵
∴
在中,
∴
∴
考查旋转变换,勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是熟练掌握基本知识.
18、(1);(2)--.
【解析】
【分析】(1)根据同分母分式加减法的法则进行计算即可得;
(2)利用多项式乘多项式的法则进行展开,然后再合并同类二次根式即可得.
【详解】(1)= =;
(2)原式=-+-
=--.
【点睛】本题考查了分式的加减法、二次根式的混合运算,熟练掌握同分母分式加减法法则、二次根式混合运算的运算法则是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.
【解析】
直接利用二次根式的加减运算法则计算得出答案.
【详解】
解:-=.
故答案为:.
此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.
20、17
【解析】
地毯的长度实际是所有台阶的宽加上台阶的高,平移可得,台阶的宽之和与高之和构成了直角三角形的两条直角边,因此利用勾股定理求出水平距离即可.
【详解】
根据勾股定理,楼梯水平长度为:
=12米,
则红地毯至少要12+5=17米长.
本题考查了勾股定理的应用,是一道实际问题,解题的关键是从实际问题中抽象出直角三角形,利用平移性质,把地毯长度分割为直角三角形的直角边.
21、8.5
【解析】
根据图形,这10个学生的分数为:7,7.5,8,8,8.5,8.5,9,9,9,9.5,则中位数为8.5.
故答案:8.5.
22、14或1
【解析】
由平行四边形ABCD推出∠AEB=∠CBE,由已知得到∠ABE=∠CBE,推出AB=AE,分两种情况(1)当AE=2时,求出AB的长;(2)当AE=3时,求出AB的长,进一步求出平行四边形的周长.
解:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
∵∠ABC的平分线将AD边分成的两部分的长分别为2和3两部分,
当AE=2时,则平行四边形ABCD的周长是14;
(2)当AE=3时,则平行四边形ABCD的周长是1;
故答案为14 或1.
“点睛”此题考查了平行四边形的性质:平行四边形的对边相等且平行.注意当有平行线和角平分线出现时,会有等腰三角形出现,解题时还要注意分类讨论思想的应用.
23、.
【解析】
根据关系式:现在已有资金1000万元×(1+年平均增长率)2=现在已有资金1万元,把相关数值代入即可求解.
【详解】
设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:1000(1+x)2=1.
故答案为:1000(1+x)2=1.
此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
二、解答题(本大题共3个小题,共30分)
24、这个最短距离为10km.
【解析】
分析:(1)作点A关于MN的对称点C,连接BC交MN于点P,连接PA,此时PA+PB的值最小.
(2)作CD⊥BB1的延长线于D,在Rt△BCD中,利用勾股定理求出BC即可;
详解:(1)作点A关于MN的对称点C,连接BC交MN于点P,连接PA,此时PA+PB的值最小.
(2)作CD⊥BB1的延长线于D,
在Rt△BCD中,BC= =10,
∴PA+PB的最小值=PB+PC=BC=10(km).
点睛:本题考查作图-应用与设计,轴对称-最短问题、勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,学会添加常用辅助线,构造直角三角形解决问题.
25、AB=20,EC=
【解析】
根据勾股定理即可求出AB的长;连接BE,根据线段垂直平分线的性质可得AE=BE,然后设CE=x,由勾股定理可得关于x的方程,继而求得答案.
【详解】
解:在Rt△ABC中,∵∠C=90°,AC=16,BC=12,∴AB==20;
连接BE,如图,∵AB的垂直平分线分别交AB、AC于点D、E,∴AE=BE,
设EC=x,则BE=AE=16-x,
在Rt△EBC中,∵∠C=90°,BC=12,
∴,解得:x=,即EC=.
此题考查了线段垂直平分线的性质以及勾股定理,难度不大,注意掌握数形结合思想与方程思想的应用.
26、(1);(2);(3)BP=或3或.
【解析】
(1)先根据题意推出△ABE是等腰直角三角形,再根据勾股定理计算即可.
(2)首先要推出△CPQ是等腰直角三角形,再根据已知推出各边的长度,然后相加即可.
(3)首先证明△BPE∽△CQP,然后分三种情况讨论,分别求解,即可解决问题.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB=CD,
∵BE=CD=3,
∴AB=BE=3,
又∵∠A=45°,
∴∠BEA=∠A=45°,∠ABE=90°,
根据勾股定理得AE==;
(2)∵四边形ABCD是平行四边形,
∴AB=CD,∠A=∠C=45°,
又∵四边形ABPE是平行四边形,
∴BP∥AB,且AE=BP,
∴BP∥CD,
∴ED=CP=,
∵∠EPQ=45°,
∴∠PQC=∠EPQ=45°,
∴∠PQC=∠C=45°,∠QPC=90°,
∴CP=PQ=,QC=2,
∴△CPQ的周长=2+2;
(3)解:如图,作BH⊥AE于H,连接BE.
∵四边形ABCD是平行四边形,
∴AB=CD=3,AD=BC=AE+ED=,∠A=∠C=45°,
∴AH=BH=,HE=AD-AH-DE=
∴BH=EH,
∴∠EBH=∠HEB=∠EBC=45°,
∴∠EBP=∠C=45°,
∵∠BPQ=∠EPB+∠EPQ=∠C+∠PQC,∠EPQ=∠C,
∴∠EPB=∠PQC,
∴△BPE∽△CQP.
①当QP=QC时,则BP=PE,
∴∠EBP=∠BEP=45°,则∠BPE=90°,
∴四边形BPEF是矩形,
BP=EF=,
②当CP=CQ时,则BP=BE=3,
③当CP=PQ时,则BE=PE=3,∠BEP=90°,
∴△BPE为等腰三角形,
∴BP2=BE2+PE2,
∴BP=,
综上:BP=或3或.
本题利用平行四边形的性质求解,其中运用了分类讨论的思想,这是解题关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届南平市重点中学九上数学开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖北省宜昌市数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年苏州市重点中学数学九上开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。