搜索
    上传资料 赚现金
    英语朗读宝

    2025届云南省昭通市盐津县九上数学开学监测试题【含答案】

    2025届云南省昭通市盐津县九上数学开学监测试题【含答案】第1页
    2025届云南省昭通市盐津县九上数学开学监测试题【含答案】第2页
    2025届云南省昭通市盐津县九上数学开学监测试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届云南省昭通市盐津县九上数学开学监测试题【含答案】

    展开

    这是一份2025届云南省昭通市盐津县九上数学开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知点P(a+l,2a-3)关于x轴的对称点在第一象限,则a的取值范围是( )
    A.B.C.D.
    2、(4分)如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为( )
    A.4.5mB.4.8mC.5.5mD.6 m
    3、(4分)做“抛掷一枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法正确的是( )
    A.概率等于频率B.频率等于C.概率是随机的D.频率会在某一个常数附近摆动
    4、(4分)把分式中的x和y都扩大为原来的5倍,那么这个分式的值( )
    A.扩大为原来的5倍B.不变
    C.缩小到原来的D.扩大为原来的倍
    5、(4分)下列图形中是中心对称图形,但不是轴对称图形的是( )
    A.B.C.D.
    6、(4分)某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )
    A.2400元、2400元
    B.2400元、2300元
    C.2200元、2200元
    D.2200元、2300元
    7、(4分)如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为( )
    A.14B.16C.18D.20
    8、(4分)如图四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°.若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是( )
    A.30°B.45°C.60°D.90°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)直线y=3x-2不经过第________________象限.
    10、(4分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC=2,CE=4,则四边形ACEB的周长为 ▲ .
    11、(4分)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为__________.
    12、(4分)因式分解:2a2﹣8= .
    13、(4分)若代数式有意义,则x的取值范围是______。
    三、解答题(本大题共5个小题,共48分)
    14、(12分)解不等式(组),并将其解集分别表示在数轴上
    (1)10﹣4(x﹣3)≤2(x﹣1);
    (2).
    15、(8分)解方程:
    (1)
    (2)2x2﹣4x+1=0
    16、(8分)如图①,在平面直角坐标系中,直线y=−12x+2与交坐标轴于A,B两点.以AB为斜边在第一象限作等腰直角三角形ABC,C为直角顶点,连接OC.
    (1)求线段AB的长度
    (2)求直线BC的解析式;
    (3)如图②,将线段AB绕B点沿顺时针方向旋转至BD,且,直线DO交直线y=x+3于P点,求P点坐标.
    17、(10分)某市为了美化环境,计划在一定的时间内完成绿化面积万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加,而且要提前年完成任务,经测算要完成新的计划,平均每年的绿化面积必须比原计划多万亩,求原计划平均每年的绿化面积.
    18、(10分)如图,在中,,点是边上的中点,、分别垂直、于点和.求证:
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,正方形中,点在上,交、于点、,点、分别为、的中点,连接、,若,,则______.
    20、(4分)如图,将平行四边形ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,有以下四个结论①MN∥BC;②MN=AM;③四边形MNCB是矩形;④四边形MADN是菱形,以上结论中,你认为正确的有_____________(填序号).
    21、(4分)如图,已知直线:与直线:相交于点,直线、分别交轴于、两点,矩形的顶点、分别在、上,顶点、都在轴上,且点与点重合,那么 __________________.
    22、(4分)如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为________.
    23、(4分)如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要____________元钱.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),
    (1)请画出把△ABO向下平移5个单位后得到的△A1B1O1的图形;
    (2)请画出将△ABO绕点O顺时针旋转90°后得到的△A2B2O2,并写出点A的对应点A2的坐标。
    25、(10分)如图,直线是一次函数的图象.
    (1)求出这个一次函数的解析式;
    (2)将该函数的图象向下平移3个单位,求出平移后一次函数的解析式,并写出平移后的图像与轴的交点坐标
    26、(12分)(1)已知点A(2,0)在函数y=kx+3的图象上,求该函数的表达式并画出图形;
    (2)求该函数图象与坐标轴围成的三角形的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    关于x轴对称的点的坐标,一元一次不等式组的应用.
    【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可:
    ∵点P(a+1,2a-3)关于x轴的对称点在第一象限,∴点P在第四象限.
    ∴.
    解不等式①得,a>-1,解不等式②得,a<,
    所以,不等式组的解集是-1<a<.故选B.
    2、D
    【解析】
    根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.
    【详解】
    解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,
    ∵△ABC∽△EDC,
    ∴,
    即,
    解得:AB=6,
    故选:D.
    本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.
    3、D
    【解析】
    频率是在一次试验中某一事件出现的次数与试验总数的比值。概率是某一事件所固有的性质。频率是变化的每次试验可能不同,概率是稳定值不变。在一定条件下频率可以近似代替概率。
    【详解】
    A、概率不等于频率,A选项错误;
    B、频率等于 ,B选项错误
    C、概率是稳定值不变,C选项错误
    D、频率会在某一个常数附近摆动,D选项是正确的。
    故答案为:D
    此题主要考查了概率公式,以及频率和概率的区别。
    4、B
    【解析】
    先将x和y都扩大为原来的5倍,然后再化简,可得答案.
    【详解】
    解:分式中的x和y都扩大为原来的5倍,得,
    所以这个分式的值不变,
    故选:B.
    此题考查了分式的基本性质,关键是熟悉分式的运算法则.
    5、D
    【解析】
    将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.
    【详解】
    A、是轴对称图形,是中心对称图形;
    B、是轴对称图形,是中心对称图形;
    C、是轴对称图形,不是中心对称图形;
    D、不是轴对称图形,是中心对称图形,
    故选:D.
    此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.
    6、A
    【解析】
    众数是在一组数据中,出现次数最多的数据;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)
    【详解】
    这组数据中,出现次数最多的是2400元,故这组数据的众数为2400元.
    将这组数据重新排序为2000,2200,2200,2200,2400,2400,2400,2400,2600,2600,∴中位数是按从小到大排列后第5,6个数的平均数,为:2400元.
    故选A.
    7、C
    【解析】
    由△DBC≌△EBA,可知AE=DC,推出AE+AD+DE=AD+CD+ED=AC+DE即可解决问题.
    【详解】
    ∵△ABC,△DBE都是等边三角形,
    ∴BC=BA,BD=BE,∠ABC=∠EBD,
    ∴∠DBC=∠EBA,
    ∴△DBC≌△EBA,
    ∴AE=DC,
    ∴AE+AD+DE=AD+CD+ED=AC+DE,
    ∵AC=BC=10,DE=BD=8,
    ∴△AED的周长为18,
    故选C.
    本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题时正确寻找全等三角形解决问题,属于中考常考题型.
    8、A
    【解析】
    根据正方形的性质可得AB=AD,∠B=∠D=90°,再根据旋转的性质可得AE=AF,然后利用“HL”证明Rt△ABE和Rt△ADF全等,根据全等三角形对应角相等可得∠DAF=∠BAE,然后求出∠EAF=30°,再根据旋转的定义可得旋转角的度数.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=AD,∠B=∠D=90°,
    ∵线段AE绕点A逆时针旋转后与线段AF重合,
    ∴AE=AF,
    在Rt△ABE和Rt△ADF中,

    ∴Rt△ABE≌Rt△ADF(HL),
    ∴∠DAF=∠BAE,
    ∵∠BAE=30°,
    ∴∠DAF=30°,
    ∴∠EAF=90°-∠BAE-∠DAF=90°-30°-30°=30°,
    ∴旋转角为30°.
    故选:A.
    本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,求出Rt△ABE和Rt△ADF全等是解题的关键,也是本题的难点.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、二
    【解析】
    根据已知求得k,b的符号,再判断直线y=3x-2经过的象限.
    【详解】
    解:∵k=3>0,图象过一三象限,b=-2<0过第四象限
    ∴这条直线一定不经过第二象限.
    故答案为:二
    此题考查一次函数的性质,一次函数y=kx+b的图象有四种情况:
    ①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
    ②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
    ③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
    ④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
    10、10+.
    【解析】
    先证明四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.
    ∵∠ACB=90°,DE⊥BC,∴AC∥DE.
    又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=1.
    在Rt△CDE中,DE= 1,CE=2,由勾股定理得.
    ∵D是BC的中点,∴BC=1CD=2.
    在△ABC中,∠ACB=90°,由勾股定理得.
    ∵D是BC的中点,DE⊥BC,∴EB=EC=2.
    ∴四边形ACEB的周长=AC+CE+EB+BA=10+.
    11、9
    【解析】
    设每轮传染中平均一个人传染的人数为x人,
    那么由题意可知(1+x)2=100,
    解得x=9或-11
    x=-11不符合题意,舍去.
    那么每轮传染中平均一个人传染的人数为9人
    12、2(a+2)(a-2).
    【解析】
    2a2-8=2(a2-4)=2(a+2)(a-2).
    故答案为2(a+2)(a-2)
    考点:因式分解.
    13、x>5
    【解析】
    若代数式 有意义,则分母即≠0,可得出x≠5.根据根式的性质能够得出x-5≥0,结合前面x≠5,即可得出x的取值范围.
    【详解】
    若代数式有意义,
    则≠0,得出x≠5.
    根据根式的性质知中被开方数x-5≥0
    则x≥5,
    由于x≠5,则可得出x>5,
    答案为x>5.
    本题主要考查分式及根式有意义的条件,易错点在于学生容易漏掉其中之一.
    三、解答题(本大题共5个小题,共48分)
    14、(1)x≥1,解集在数轴上如图所示见解析;(2)﹣1≤x<3,解集在数轴上如图所示见解析.
    【解析】
    (1)去括号,移项,合并同类项,化系数为1即可;
    (2)先求出其中各不等式的解集,再求出这些解集的公共部分即可.
    【详解】
    (1)10﹣1(x﹣3)≤2(x﹣1)
    10﹣1x+12≤2x﹣2,
    ﹣6x≤﹣21,
    x≥1.
    解集在数轴上如图所示:
    (2)
    由①得到:x≥﹣1,
    由②得到:x<3,
    ∴﹣1≤x<3,
    本题考查不等式组的解法,数轴等知识,解题的关键是熟练掌握不等式组的解法,属于中考常考题型.
    15、(1)无解;(2)x1=,x2=.
    【解析】
    (1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;
    (2)移项,系数化成1,配方,开方,即可的两个方程,求出方程的解即可.
    【详解】
    解:(1)方程两边都乘以x(x﹣4)得:3x﹣4+x(x﹣4)=x(x﹣2),
    解得:x=4,
    检验:当x=4时,x(x﹣4)=0,所以x=4不是原方程的解,
    即原方程无解;
    (2)2x2﹣4x+1=0,
    2x2﹣4x=﹣1,
    x2﹣2x=﹣,
    x2﹣2x+1=﹣+1,
    (x﹣1)2=,
    x﹣1=,
    x1=,x2=.
    本题考查了解分式方程和解一元二次方程,能把分式方程转化成整式方程是解(1)的关键,并且要注意检验;能正确配方是解(2)的关键.
    16、(1);(2);(3)P点的坐标是.
    【解析】
    (1)先确定出点A,B坐标,利用勾股定理计算即可;
    (2)如图1中,作CE⊥x轴于E,作CF⊥y轴于F,进而判断出,即可判断出四边形OECF是正方形,求出点C坐标即可解决问题.
    (3)如图2中,先判断出点B是AM的中点,进而求出M的坐标,即可求出DP的解析式,联立成方程组求解即可得出结论.
    【详解】
    解:(1)∵直线交坐标轴于A、B两点.
    ∴令,,∴B点的坐标是,

    令,,∴A点的坐标是,

    根据勾股定理得:.
    (2)如图,作CE⊥x轴于E,作CF⊥y轴于F,
    ∴四边形OECF是矩形.
    ∵是等腰直角三角形,
    ,,,

    ,,.
    ∴四边形OECF是正方形,

    ,,.
    ∴C点坐标
    设直线BC的解析式为:,
    ∴将、代入得:,
    解得:,.
    ∴直线BC的解析式为:.
    (3)延长AB交DP于M,
    由旋转知,BD=AB,
    ∴∠BAD=∠BDA,
    ∵AD⊥DP,
    ∴∠ADP=90°,
    ∴∠BDA+∠BDM=90°,∠BAD+∠AMD=90°,
    ∴∠AMD=∠BDM,
    ∴BD=BM,
    ∴BM=AB,
    ∴点B是AM的中点,
    ∵A(4,0),B(0,2),
    ∴M(−4,4),
    ∴直线DP的解析式为y=−x,
    ∵直线DO交直线y=x+3于P点,
    将直线与联立得:
    解得:
    ∴P点的坐标是.
    此题是一次函数综合题,主要考查了待定系数法求函数解析式,一次函数的图像和性质,全等三角形的判定和性质,等腰三角形的判定和性质等,解(2)的关键是求出点C的坐标,解(3)的关键是证明点B是AM的中点,求出直线DP的解析式.
    17、原计划平均每年完成绿化面积万亩.
    【解析】
    本题的相等关系是:原计划完成绿化时间−实际完成绿化实际=1.设原计划平均每年完成绿化面积x万亩,则原计划完成绿化完成时间年,实际完成绿化完成时间:年,列出分式方程求解
    【详解】
    解:设原计划平均每年完成绿化面积万亩.
    根据题意可列方程:
    去分母整理得:
    解得:,
    经检验:,都是原分式方程的根,因为绿化面积不能为负,所以取.
    答:原计划平均每年完成绿化面积万亩.
    本题考查了分式方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.列分式方程解应用题的检验要分两步:第一步检验它是否是原方程的根,第二步检验它是否符合实际问题.
    18、见解析
    【解析】
    证法一:连接AD,由三线合一可知AD平分∠BAC,根据角平分线的性质定理解答即可;证法二:根据“AAS”△BED≌△CFD即可.
    【详解】
    证法一:连接AD.
    ∵AB=AC,点D是BC边上的中点,
    ∴AD平分∠BAC(等腰三角形三线合一性质),
    ∵DE、DF分别垂直AB、AC于点E和F,
    ∴DE=DF(角平分线上的点到角两边的距离相等).
    证法二:在△ABC中,
    ∵AB=AC,
    ∴∠B=∠C(等边对等角).
    ∵点D是BC边上的中点,
    ∴BD=DC ,
    ∵DE、DF分别垂直AB、AC于点E和F,
    ∴∠BED=∠CFD=90°.
    在△BED和△CFD中
    ∵,
    ∴△BED≌△CFD(AAS),
    ∴DE=DF(全等三角形的对应边相等).
    本题考查了等腰三角形的性质,角平分线的性质,以及全等三角形的判定与性质,熟练掌握角平分线的性质以及全等三角形的判定与性质是解答本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    连接,取的中点,连,,由中位线性质得到,,,,设,由勾股定理得方程,求解后进一步可得MN的值.
    【详解】
    解:连接,取的中点,连,,
    则,,,
    ∵,为中点
    ∴,
    ∵BD平分,
    ∴BE=EG
    设,
    则,
    ∴在中,

    解得(舍),
    ∴,,
    ∴.
    本题考查了正方形和直角三角形的性质,添加辅助线后运用中位线性质和方程思想解决问题是解题的关键.
    20、①②④
    【解析】
    根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠NMA,再利用等量代换可得∠B=∠NMA,然后根据平行线的判定方法可得MN∥BC;证明四边形AMND是平行四边形,再根据折叠可得AM=DA,进而可证出四边形AMND为菱形,再根据菱形的性质可得MN=AM,不能得出∠B=90°;即可得出结论.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴∠B=∠D,
    ∵根据折叠可得∠D=∠NMA,
    ∴∠B=∠NMA,
    ∴MN∥BC;①正确;
    ∵四边形ABCD是平行四边形,
    ∴DN∥AM,AD∥BC,
    ∵MN∥BC,
    ∴AD∥MN,
    ∴四边形AMND是平行四边形,
    根据折叠可得AM=DA,
    ∴四边形AMND为菱形,
    ∴MN=AM;②④正确;
    没有条件证出∠B=90°,④错误;
    故答案为①②④.
    本题主要考查了翻折变换的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定等知识,熟练掌握翻折变换的性质、平行四边形和菱形以及矩形的判定是解题的关键.
    21、2:5
    【解析】
    把y=0代入l1解析式求出x的值便可求出点A的坐标.令x=0代入l2的解析式求出点B的坐标.然后可求出AB的长.联立方程组可求出交点C的坐标,继而求出三角形ABC的面积,再利用xD=xB=2易求D点坐标.又已知yE=yD=2可求出E点坐标.故可求出DE,EF的长,即可得出矩形面积.
    【详解】
    解:由 x+=0,得x=-1.
    ∴A点坐标为(-1,0),
    由-2x+16=0,得x=2.
    ∴B点坐标为(2,0),
    ∴AB=2-(-1)=3.
    由 ,解得,
    ∴C点的坐标为(5,6),
    ∴S△ABC=AB•6=×3×6=4.
    ∵点D在l1上且xD=xB=2,
    ∴yD=×2+=2,
    ∴D点坐标为(2,2),
    又∵点E在l2上且yE=yD=2,
    ∴-2xE+16=2,
    ∴xE=1,
    ∴E点坐标为(1,2),
    ∴DE=2-1=1,EF=2.
    ∴矩形面积为:1×2=32,
    ∴S矩形DEFG:S△ABC=32:4=2:5.
    故答案为:2:5.
    此题主要考查了一次函数交点坐标求法以及图象上点的坐标性质等知识,根据题意分别求出C,D两点的坐标是解决问题的关键.
    22、1
    【解析】
    根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA 是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.
    【详解】
    解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,
    ∴△ABC≌△A1BC1,
    ∴A1B=AB=6,
    ∴△A1BA 是等腰三角形,∠A1BA=30°,
    ∴S△A1BA= ×6×3=1,
    又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,
    S△A1BC1=S△ABC,
    ∴S 阴影=S△A1BA=1. 故答案为1.
    本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.
    23、612.
    【解析】
    先由勾股定理求出BC的长为12m,再用(AC+BC)乘以2乘以18即可得到答案
    【详解】
    如图,∵∠C=90,AB=13m,AC=5m,
    ∴BC==12m,
    ∴(元),
    故填:612.
    此题考查勾股定理、平移的性质,题中求出地毯的总长度是解题的关键,地毯的长度由平移可等于楼梯的垂直高度和水平距离的和,进而求得地毯的面积.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析(2)(3,-1)
    【解析】
    (1)找到△ABO的三个顶点A、B、O、分别向下平移5个单位,找的它们的对应点A1、B1、O1,连接A1 B1、B1 O1、O1 A1,即可得到题目所要求图形△A1B1O1.
    (2) 将△ABO绕点O顺时针旋转90°,则旋转中心O点的对应点O2的坐标仍为(0、0),OA可以看成它所在长方形的对角线,通过旋转长方形即可得到OA的对应线段O2A2,同理得出OB的对应线段O2B2,连接A2B2即可得到△A2B2O2.
    【详解】
    (1)
    (2)由图可知,A2的坐标为(3,﹣1).
    本题主要考查图形的平移与旋转,旋转是本题的难点.
    25、(1);(2),
    【解析】
    (1)利用待定系数法求一次函数解析式即可;
    (2)根据一次函数的平移规律:左加右减,上加下减,即可求出平移后的解析式,然后将y=0代入求出x的值,即可求出结论.
    【详解】
    解:(1)把点,代入中,得:

    解得
    ∴一次函数的解析式为
    (2)将该函数的图象向下平移3个单位后得.
    当时,解得:
    ∴平移后函数图象与轴的交点坐标为
    此题考查的是求一次函数的解析式和一次函数图象的平移,掌握用待定系数法求一次函数的解析和一次函数的平移规律:左加右减,上加下减是解决此题的关键.
    26、(1) ,画图形见解析;(2)
    【解析】
    (1)将点代入,运用待定系数法求解即可;
    (2)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.
    【详解】
    解:(1)∵点A(2,0)在函数y=kx+3的图象上,
    ∴2k+3=0,解得k=,
    函数解析式为,
    图像如下图所示:
    (2)在中,令y=0,即,解得x=2,
    令x=0,即,解得y=3,
    ∴函数图象与x轴、y轴分别交于点B(2,0)和A(0,3),
    ∴该函数图象与坐标轴围成的三角形的面积即为三角形AOB的面积,
    ∴.
    本题考查待定系数法求函数解析式及三角形的面积的知识,难度不大,关键是正确得出函数解析式及坐标与线段长度的转化.
    题号





    总分
    得分
    工资(元)
    2000
    2200
    2400
    2600
    人数(人)
    1
    3
    4
    2

    相关试卷

    2024年云南省昭通市盐津县数学九年级第一学期开学达标测试试题【含答案】:

    这是一份2024年云南省昭通市盐津县数学九年级第一学期开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年云南省昭通市名校九上数学开学预测试题【含答案】:

    这是一份2024-2025学年云南省昭通市名校九上数学开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年云南省昭通市九上数学开学监测模拟试题【含答案】:

    这是一份2024-2025学年云南省昭通市九上数学开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map