2025届浙江省金华市国际实验学校数学九年级第一学期开学质量检测模拟试题【含答案】
展开
这是一份2025届浙江省金华市国际实验学校数学九年级第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( )
A.B.C.D.
2、(4分)在同一平面直角坐标系中,函数y=与函数y=-x+b(其中b是实数)的图象交点个数是( ).
A.0个B.1个C.2个D.0或1或2个
3、(4分)下列各组数中,属于勾股数的是( )
A.1,,2B.1.5,2,2.5C.6,8,10D.5,6,7
4、(4分)下列等式正确的是( )
A.B.C.D.
5、(4分)在分式(a,b为正数)中,字母a,b值分别扩大为原来的3倍,则分式的值( )
A.不变B.缩小为原来的
C.扩大为原来的3倍D.不确定
6、(4分)﹣2的绝对值是( )
A.2B.C.D.
7、(4分)一元二次方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.没有实数根D.不能确定
8、(4分)在平行四边形中,于点,于点,若,,平行四边形的周长为,则( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在一个矩形中,若一个角的平分线把一条边分成长为3cm和4cm的两条线段,则该矩形周长为_________
10、(4分)一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要___小时.
11、(4分)一次函数y=kx+b的图象如图所示,若点A(3,m)在图象上,则m的值是__________.
12、(4分)用换元法解方程时,如果设,那么所得到的关于的整式方程为_____________
13、(4分)如图,过点N(0,-1)的直线y=kx+b与图中的四边形ABCD有不少于两个交点,其中A(2,3)、B(1,1)、C(4,1)、D(4,3),则k的取值范围____________
三、解答题(本大题共5个小题,共48分)
14、(12分)若a=,b=,请计算a2+b2+2ab的值.
15、(8分)先化简,再求值:,在﹣2,0,1,2四个数中选一个合适的代入求值.
16、(8分)如图,在平面直角坐标系中,直线分别与轴、轴交于点,,且点的坐标为,点为的中点.
(1)点的坐标是________,点的坐标是________;
(2)直线上有一点,若,试求出点的坐标;
(3)若点为直线上的一个动点,过点作轴的垂线,与直线交于点,设点的横坐标为,线段的长度为,求与的函数解析式.
17、(10分)某校为了解学生“体育课外活动”的锻炼效果,在期末结束时,随机从学校1200名学生中抽取了部分学生的体育测试成绩绘制了条形统计图,请根据统计图提供的信息,回答下列问题.
(1)这次抽样调查共抽取了多少名学生的体育测试成绩进行统计?
(2)随机抽取的这部分学生中男生体育成绩的众数是多少?女生体育成绩的中位数是多少?
(3)若将不低于40分的成绩评为优秀,请估计这1200名学生中成绩为优秀的学生大约是多少?
18、(10分)如图,在直角坐标系中,OA=3,OC=4,点B是y轴上一动点,以AC为对角线作平行四边形ABCD.
(1)求直线AC的函数解析式;
(2)设点B(0,m),记平行四边形ABCD的面积为S,请写出S与m的函数关系式,并求当BD取得最小值时,函数S的值;
(3)当点B在y轴上运动,能否使得平行四边形ABCD是菱形?若能,求出点B的坐标;若不能,说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.
20、(4分)如图,在正方形ABCD的右边作等腰三角形ADE,AD=AE,,连BE,则__________.
21、(4分)计算:______.
22、(4分)已知是一元二次方程的一根,则该方程的另一个根为_________.
23、(4分)如图,矩形ABCD的两条对角线相交于点O,若∠AOD=60°,AD=2,则AC的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知直线y=kx+b经过点A(﹣20,1)、B(10,20)两点.
(1)求直线y=kx+b的表达式;
(2)当x取何值时,y>1.
25、(10分)如图,直线y=x+9分别交x轴、y轴于点A、B,∠ABO的平分线交x轴于点C.
(1)求点A、B、C的坐标;
(2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.
26、(12分)(1)计算
(2)下面是小刚解分式方程的过程,请仔细阅读,并解答所提出的问题.
解方程
解:方程两边乘,得第一步
解得 第二步
检验:当时,.
所以,原分式方程的解是 第三步
小刚的解法从第 步开始出现错误,原分式方程正确的解应是 .
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.
【详解】
如图,连接BE.
∵四边形ABCD是矩形,
∴AB=CD=2,BC=AD=1,∠D=90°,
在Rt△ADE中,AE===,
∵S△ABE=S矩形ABCD=1=•AE•BF,
∴BF=.
故选:B.
本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.
2、D
【解析】
联立两个函数可得,再根据根的判别式确定交点的情况即可.
【详解】
联立两个函数得
∴根的判别式的值可以为任意数
∴这两个函数的图象交点个数是0或1或2个
故答案为:D.
本题考查了函数交点的问题,掌握根的判别式是解题的关键.
3、C
【解析】
根据勾股数的定义:满足a2+b2=c2 的三个正整数,称为勾股数,据此判断即可.
【详解】
A.1,,2,因为不是正整数,故一定不是勾股数,故此选项错误;
B.1.5,2,2.5,因为不是正整数,故一定不是勾股数,故此选项错误;
C.因为62+82=102,故是勾股数.故此选项正确;
D.因为52+62≠72,故不是勾股数,故此选项错误.
故选C.
本题考查了勾股数的判定方法,比较简单,首先看各组数据是否都是正整数,再检验是否符合较小两边的平方和=最大边的平方.
4、B
【解析】
根据平方根、算术平方根的求法,对二次根式进行化简即可.
【详解】
A.=2,此选项错误;
B.=2,此选项正确;
C. =﹣2,此选项错误;
D.=2,此选项错误;
故选:B.
本题考查了二次根式的化简和求值,是基础知识比较简单.
5、B
【解析】
把a和b的值扩大大为原来的3倍,代入后根据分式的基本性质即可求出答案.
【详解】
解:把a和b的值扩大大为原来的3倍,得
= ,
∴分式的值缩小为原来的.
故选:B.
本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.
6、A
【解析】
分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.
7、B
【解析】
根据根的判别式判断即可.
【详解】
∵,
∴该方程有两个相等的实数根,
故选:B.
此题考查一元二次方程的根的判别式,熟记根的三种情况是解题的关键.
8、D
【解析】
已知平行四边形的高AE、AF,设BC=xcm,则CD=(20-x)cm,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.
【详解】
解:设BC=xcm,则CD=(20−x)cm,
根据“等面积法”得,4x=6(20−x),
解得x=12,
∴平行四边形ABCD的面积=4x=4×12=48;
故选D.
本题主要考查了平行四边形的性质,掌握平行四边形的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20或22
【解析】
根据题意矩形的长为7,宽为3或4,因此计算矩形的周长即可.
【详解】
根据题意可得矩形的长为7
当形成的直角等腰三角形的直角边为3时,则矩形的宽为3
当形成的直角等腰三角形的直角边为4时,则矩形的宽为4
矩形的宽为3或4
周长为或
故答案为20或22
本题主要考查等腰直角三角形的性质,关键在于确定宽的长.
10、
【解析】
甲单独做一天可完成工程总量的,乙单独做一天可完成工程总量的,二人合作一天可完成工程总量的.工程总量除以二人合作一天可完成工程量即可得出二人合作完成该工程所需天数.
【详解】
解答:解:设该工程总量为1.
二人合作完成该工程所需天数=1÷()=1÷=.
本题考查列代数式(分式),解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.
11、2.5
【解析】
先用待定系数法求出直线解析式,再将点A代入求解可得.
【详解】
解:将(-2,0)、(0,1)代入y=kx+b,得:,
解得:
∴y=x+1,
将点A(3,m)代入,得:
即
故答案为:2.5
本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.
12、
【解析】
可根据方程特点设,则原方程可化为-y=1,再去分母化为整式方程即可.
【详解】
设,则原方程可化为:-y=1,
去分母,可得1-y2=y,
即y2+y-1=1,
故答案为:y2+y-1=1.
本题考查用换元法解分式方程的能力.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,再将分式方程可化为整式方程.
13、<k≤2.
【解析】
直线y=kx+b过点N(0,-2),则b=-2,y=kx-2.当直线y=kx-2的图象过A点时,求得k的值;当直线y=kx-2的图象过B点时,求得k的值;当直线y=kx-2的图象过C点时,求得k的值,最后判断k的取值范围.
【详解】
∵直线y=kx+b过点N(0,-2),
∴b=-2,
∴y=kx-2.
当直线y=kx-2的图象过A点(2,3)时,
2k-2=3,k=2;
当直线y=kx-2的图象过B点(2,2)时,
k-2=2,k=2;
当直线y=kx-2的图象过C点(4,2)时,
4k-2=2,k=,
∴k的取值范围是<k≤2.
故答案为<k≤2.
本题主要考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.
三、解答题(本大题共5个小题,共48分)
14、1.
【解析】
将a、b的值代入原式=(a+b)2计算可得.
【详解】
当a=,b=时,
原式=(a+b)2
=1.
本题主要考查考查二次根式的运算,解题的关键是掌握完全平方公式和二次根式的混合运算顺序和法则.
15、,1.
【解析】
试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=1代入计算即可求出值.
试题解析:原式=(
=
=2(x+4)
当x=1时,原式=1.
16、(1),;(2)或;(3).
【解析】
(1)将点A(8,0)代入可求得一次函数解析式,再令x=0即可得到B点坐标;因为C是A、B中点,利用中点坐标公式可求出C点坐标;
(2)先求出△AOC的面积,则△NOA的面积为△AOC的面积的一半,设N点的坐标,可根据列出方程求解;
(3)可先求出直线OC的函数解析式,把点P、Q坐标表示出来,分情况讨论即可得出答案.
【详解】
解:(1)将A(8,0)代入得:,解得:b=6;
∴
令x=0,得:y=6,∴点的坐标为
∵C为AB中点,
∴的坐标为
故答案为:点的坐标为,的坐标为;
(2)或
由题可得S△AOC=
∵
∴S△NOA=
设
S△NOA=
解得:n=6或n=10
将n=6代入得;
将n=10代入得;
∴或
(3)依照题意画出图形,如图所示.
解图1 解图2
∵.
设直线的解析式为,
则有,解得:,
∴直线的解析式为.
∵点在直线上,点在直线上,点的横坐标为,轴,
∴,
当时,;
当时,.
故与的函数解析式为.
本题考查待定系数法求函数解析式,坐标系中三角形面积的算法以及线段长度的算法,在计算的时注意分类讨论.
17、 (1)100名;(2)男生体育成绩的众数40分;女生体育成绩的中位数是40分;(3)756名.
【解析】
(1)将条形图中各分数的人数相加即可得;
(2)根据众数和中位数的定义求解可得;
(3)总人数乘以样本中优秀人数所占比例可得.
【详解】
解:(1)抽取的学生总人数为5+7+10+15+15+12+13+10+8+5=100(名);
(2)由条形图知随机抽取的这部分学生中男生体育成绩的众数40分,
∵女生总人数为7+15+12+10+5=49,其中位数为第25个数据,
∴女生体育成绩的中位数是40分;
(3)估计这1200名学生中成绩为优秀的学生大约是1200×=756(名).
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.除此之外,本题也考查了平均数、中位数、众数的认识.
18、(1);(2) ①当m≤4时,S=-3m+12,②当m>4时,S=3m-12(3)(0,)
【解析】
(1)根据OA、OC的长度求出A、C坐标,再利用待定系数法求解即可;
(2)根据点B的坐标可得出BC的长,结合平行四边形的面积公式求出S与m的关系式,再根据AD∥y轴即可求出当BD最短时m的值,将其代入解析式即可;
(3)根据菱形的性质找出m的值,从而根据勾股定理求解即可.
【详解】
解:(1)∵OA=3,OC=4,
∴A(-3,0)、C(0,4).
设直线AC的函数解析式为y=kx+b,
将点A(-3,0)、C(0,4)代入y=kx+b中,
得:,解得:,
∴直线AC的函数解析式为:.
(2)∵点B(0,m),四边形ABCD为以AC为对角线的平行四边形,
∴m≤4,BC=4-m,
∴S=BC•OA=-3m+12(m≤4).
同法m>4时,S=3m-12(m>4).
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴当BD⊥y轴时,BD最小(如图1).
∵AD∥OB,AO⊥OB,DA⊥OB,
∴四边形AOBD为矩形,
∴AD=OB=BC,
∴点B为OC的中点,即,
此时S=-3×2+12=1.
∴S与m的函数关式为S=-3m+12(m<4),当BD取得最小值时的S的值为1.
(3)存在
当AB=CB时,平行四边形ABCD为菱形.
理由如下:
∵平行四边形ABCD是菱形,
∴AB=BC.
,
,
解得:,
.
本题考查了待定系数法求函数解析式、平行四边形的性质、菱形的性质以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据平行四边形的面积公式找出S关于m的函数关系式;(3)学会构建方程解决问题;
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;
故答案为.
本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.
20、45°
【解析】
先证明AB=AE,求得∠AEB,由AD=AE,∠DAE=50°,求得∠AED,进而由角的和差关系求得结果.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵AD=AE,∠DAE=50°,
∴AB=AE,∠ADE=∠AED=65°,∠BAE=140°,
∴∠ABE=∠AEB=20°,
∴∠BED=65°−20°=45°,
故答案为:45°.
本题主要考查了正方形的性质,等腰三角形的性质,三角形内角和定理,关键是求得∠AEB和∠AED的度数.
21、
【解析】
根据三角形法则依次进行计算即可得解.
【详解】
如图,
∵=,
,
∴.
故答案为:.
本题考查了平面向量,主要利用了三角形法则求解,作出图形更形象直观并有助于对问题的理解.
22、-2
【解析】
由于该方程的一次项系数是未知数,所以求方程的另一解根据根与系数的关系进行计算即可.
【详解】
设方程的另一根为x1,
由根与系数的关系可得:1× x1=-2,
∴x1=-2.
故答案为:-2.
本题考查一元二次方程根与系数的关系,明确根与系数的关系是解题的关键.
23、1
【解析】
利用直角三角形30度角的性质,可得AC=2AD=1.
【详解】
解:在矩形ABCD中,OC=OD,
∴∠OCD=∠ODC,
∵∠AOD=60°,
∴∠OCD=∠AOD=×60°=30°,
又∵∠ADC=90°,
∴AC=2AD=2×2=1.
故答案为1.
本题考查了矩形的性质,主要利用了矩形的对角线互相平分且相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键
二、解答题(本大题共3个小题,共30分)
24、(1)y=x+11;(2)x>﹣20时,y>1.
【解析】
(1)利用待定系数法求一次函数解析式;
(2)解不等式x+11>1即可.
【详解】
(1)根据题意得,解得,
所以直线解析式为y=x+11;
(2)解不等式x+11>1得x>﹣20,
即x>﹣20时,y>1.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
25、(1);(2)或
【解析】
(1)首先根据一次函数的解析式即可得出A,B的坐标,然后利用勾股定理求出AB的长度,然后根据角平分线的性质得出,再利用即可得出CD的长度,从而求出点C的坐标;
(3)首先利用平行四边形的性质找出所有可能的M点,然后分情况进行讨论,利用待定系数法即可求解.
【详解】
(1)令,则,
令,则,解得 ,
∴,
,
.
过点C作交AB于点D,
∵BC平分, ,
.
,
,
解得 ,
.
(2)如图,能与A,B,C构成平行四边形的点有三处:,
①点C与在同一直线,是经过点C与AB平行的直线,设其直线的解析式为 ,
将代入中,
得,解得 ,
∴CM所在的直线的解析式为;
②∵四边形是平行四边形,
∴ .
,
.
设直线 的解析式为 ,
将代入解析式中得
解得
∴直线解析式为 ,
综上所述,CM所在的直线的解析式为或.
本题主要考查一次函数与几何综合,平行四边形的判定与性质,掌握待定系数法及数形结合是解题的关键.
26、(1);(2)一 ,
【解析】
(1)利用完全平方公式和单项式除以单项式的法则进行计算,然后合并同类项化简;(2)按照解分式方程的步骤进行判断发现小刚在第一步去分母时,常数项2漏乘,然后进行正确的解方程计算,从而求解即可.
【详解】
解:(1)
=
=
=
=
(2)小刚的解法从第一步开始出现错误
解方程
解:方程两边乘,得
解得
检验:当时,.
所以,原分式方程的解是
故答案为:一 ,
本题考查整式的混合运算及解分式方程,掌握完全平方公式的结构及解分式方程的步骤,正确计算是本题的解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2025届湖南长沙麓山国际实验学校九上数学开学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖南省长沙市麓山国际实验学校数学九年级第一学期开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年浙江省金华市义乌市九年级数学第一学期开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。