2025届浙江省宁波市四校九年级数学第一学期开学质量检测试题【含答案】
展开
这是一份2025届浙江省宁波市四校九年级数学第一学期开学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,中,,,将绕点逆时针旋转得到,若点的对应点落在边上,则旋转角为( )
A.B.C.D.
2、(4分)对角线相等且互相平分的四边形是( )
A.一般四边形B.平行四边形C.矩形D.菱形
3、(4分)如图,正方形ABCD的边长为8,点M在边DC上,且,点N是边AC上一动点,则线段的最小值为
A.8
B.
C.
D.10
4、(4分)已知,则下列不等式一定成立的是( )
A.B.
C.D.
5、(4分)若一组数据的方差是3,则的方差是( )
A.3B.6C.9D.12
6、(4分)下列计算正确的是( )
A.=﹣3B.C.5×5=5D.
7、(4分)在△ABC中,若底边长是a,底边上的高为h,则△ABC的面积,当高h为定值时,下列说法正确的是( )
A.S,a是变量;,h是常量
B.S,a,h是变量;是常量
C.a,h是变量;S是常量
D.S是变量;,a,h是常量
8、(4分)某校规定学生的平时作业,期中考试,期末考试三项成绩分别是按30%、30%、40%计人学期总评成绩,小明的平时作业,期中考试,期末考试的英语成绩分别是93分、90分、96分,则小明这学期的总评成绩是( )
A.92B.90C.93D.93.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分式方程有增根,则的值为__________。
10、(4分)如图,∠A=90°,∠AOB=30°,AB=2,△可以看作由△AOB绕点O逆时针旋转60°得到的,则点与点B的距离为_______.
11、(4分)已知圆锥的侧面积为6兀,侧面展开图的圆心角为60º,则该圆锥的母线长是________。
12、(4分)若关于x的方程产生增根,那么 m的值是______.
13、(4分)已知一次函数y=kx+b的图象交y轴于正半轴,且y随x的增大而减小,请写出符合上述条件的一个解析式:_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校八年级同学参加社会实践活动,到“庐江农民创业园”了解大棚蔬菜生长情况.他们分两组对西红柿的长势进行观察测量,分别收集到10株西红柿的高度,记录如下(单位:厘米)
第一组:32 39 45 55 60 54 60 28 56 41
第二组:51 56 44 46 40 53 37 47 50 46
根据以上数据,回答下列问题:
(1)第一组这10株西红柿高度的平均数是 ,中位数是 ,众数是 .
(2)小明同学计算出第一组方差为S12=122.2,请你计算第二组方差,并说明哪一组西红柿长势比较整齐.
15、(8分)为积极响应“弘扬传统文化”的号召,某学校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:
请根据调查的信息分析:
(1)求活动启动之初学生“一周诗词诵背数量”的中位数;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
16、(8分)化简:
(1)2ab﹣a2+(a﹣b)2
(2)
17、(10分)(1)计算并观察下列各式:
第个: ;
第个: ;
第个:;
······
这些等式反映出多项式乘法的某种运算规律.
(2)猜想:若为大于的正整数,则;
(3)利用(2)的猜想计算;
(4)拓广与应用.
18、(10分)在△ABC中,∠C=30°,AC=4cm,AB=3cm,求BC的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)函数中,自变量x的取值范围是___________.
20、(4分)如图,在▱ABCD中,AD=8,点E、F分别是BD、CD的中点,则EF=_____.
21、(4分)分解因式:______________。
22、(4分)计算· (a≥0)的结果是_________.
23、(4分)如图,函数y=3x和y=kx+6的图象相交于点A(a,3),则不等式3x≤kx+6的解集为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.
25、(10分)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.
(1)文学书和科普书的单价各多少钱?
(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?
26、(12分)如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ于点E,交BC于点P,连接OP,OQ;
求证:(1)△BCQ≌△CDP;(2)OP=OQ.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先根据等腰三角形的性质求得∠ABC=∠C=70°,继而根据旋转的性质即可求得答案.
【详解】
∵AB=AC,∠A=40°,
∴∠ABC=∠C=(180°-∠A)=×140°=70°,
∵△EBD是由△ABC旋转得到,
∴旋转角为∠ABC=70°,
故选C.
本题考查了等腰三角形的性质,旋转的性质,熟练掌握相关知识是解题的关键.
2、C
【解析】
由对角线互相平分,可得此四边形是平行四边形;又由对角线相等,可得是矩形;
【详解】
∵四边形的对角线互相平分,
∴此四边形是平行四边形;
又∵对角线相等,
∴此四边形是矩形;
故选B.
考查矩形的判定,常见的判定方法有:
1.有一个角是直角的平行四边形是矩形.
2.对角线相等的平行四边形是矩形.
3.有三个角是直角的四边形是矩形.
3、D
【解析】
要使DN+MN最小,首先应分析点N的位置.根据正方形的性质:正方形的对角线互相垂直平分.知点D的对称点是点B,连接MB交AC于点N,此时DN+MN最小值即是BM的长.
【详解】
解:根据题意,连接BD、BM,则BM就是所求DN+MN的最小值,
在Rt△BCM中,BC=8,CM=6
根据勾股定理得:BM= ,
即DN+MN的最小值是10;
故选:D.
本题考查了轴对称问题以及正方形的性质,难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.
4、C
【解析】
根据不等式的性质对选项进行逐一判断即可得到答案.
【详解】
解:A、因为, 不知道是正负数或者是0,不能得到,则A选项的不等式不成立;
B、因为,则,所以B选项的不等式不成立;
C、因为,则,所以C选项的不等式成立;
D、因为,则,所以D选项的不等式不成立.
故选C.
本题考查了不等式的性质,解题的关键是知道不等式两边同加上(或减去)一个数,不等号方向不变;不等式两边同乘以(或除以)一个正数,不等号方向不变;不等式两边同乘以(或除以)一个负数,不等号方向改变.
5、D
【解析】
先根据的方差是3,求出数据的方差,进而得出答案.
【详解】
解:∵数据x1,x2,x3,x4,x5的方差是3,
∴数据2x1,2x2,2x3,2x4,2x5的方差是4×3=12;
∴数据的方差是12;
故选:D.
本题考查了方差的定义.当数据都加上一个数时,平均数也加这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数时,平均数也乘以这个数,方差变为这个数的平方倍.
6、D
【解析】
根据二次根式的性质对A进行判断;根据二次根式的加减运算对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.
【详解】
A、原式=3,所以A选项错误;
B、与不能合并,所以B选项错误;
C、原式=25,所以C选项错误;
D、原式==2,所以D选项正确.
故选D.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
7、A
【解析】
因为高h为定值,所以h是不变的量,即h是常量,所以S,a是变量,,h是常量.
故选A.
8、D
【解析】
小明这学期总评成绩是平时作业、期中练习、期末考试的成绩与其对应百分比的乘积之和.
【详解】
解:小明这学期的总评成绩是93×30%+90×30%+96×40%=93.3(分)
故选:D.
本题主要考查加权平均数的计算,掌握加权平均数的定义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
方程两边都乘以最简公分母(x-1)(x+1)把分式方程化为整式方程,再根据分式方程的增根是使最简公分母等于0的未知数的值,求出增根,然后代入进行计算即可得解.
【详解】
解:∵分式方程有增根,
∴x-1=0,x+1=0,
∴x1=1,x1=-1.
两边同时乘以(x-1)(x+1),原方程可化为x(x+1)-(x-1)(x+1)=m,
整理得,m=x+1,
当x=1时,m=1+1=3,
当x=-1时,m=-1+1=0,
当m=0时,方程为=0,
此时1=0,
即方程无解,
∴m=3时,分式方程有增根,
故答案为:m=3.
本题考查对分式方程的增根,解一元一次方程等知识点的理解和掌握,理解分式方程的增根的意义是解题关键.
10、1
【解析】
【分析】根据图形旋转的性质可得出△AOB≌△A′OB′,再由全等三角形的性质可得出∠A′OB′=30°,AB=1,再根据全等三角形的判定定理可得出△AOB≌△A′OB,由全等三角形的性质即可得出结论.
【详解】连接A′B,
∵△A′OB′可以看作是由△AOB绕点O逆时针旋转60°得到的,
∴△AOB≌△A′OB′,
∴OA=OA′,∠A′OA=60°,
∵∠AOB=30°,
∴∠A′OB=30°,
在△AOB与△A′OB中,
,
∴△AOB≌△A′OB,
∴A′B=AB=1,
故答案为:1.
【点睛】本题考查了旋转的性质,全等三角形的判定与性质,熟练掌握旋转的性质是解题的关键.
11、6
【解析】
根据扇形的面积计算公式:,把相应数值代入即可.
【详解】
解:设母线长为r,圆锥的侧面展开后是扇形,侧面积=6π,
∴r=6cm,
故答案是6cm.
本题考查了圆锥的计算,利用了扇形的面积公式求解,解题的关键是牢记圆锥的有关公式,难度不大.
12、1
【解析】
分式方程去分母转化为整式方程,根据分式方程有增根得到x-2=0,将x=2代入整式方程计算即可求出m的值.
【详解】
分式方程去分母得:x−1=m+2x−4,
由题意得:x−2=0,即x=2,
代入整式方程得:2−1=m+4−4,
解得:m=1.
故答案为:1.
此题考查分式方程的增根,解题关键在于掌握分式方程中增根的意义.
13、
【解析】
试题解析:∵一次函数y=kx+b的图象交y轴于正半轴,
∴b>0,
∵y随x的增大而减小,
∴k<0,
例如y=-x+1(答案不唯一,k<0且b>0即可).
考点:一次函数图象与系数的关系.
三、解答题(本大题共5个小题,共48分)
14、 (1)47,49.5,60;(2)第二组西红柿长势比较整齐.
【解析】
(1)根据平均数的计算公式进行计算求出第一组这10株西红柿高度的平均数,再根据中位数和众数的定义即可得出答案;
(2)先求出第二组方差,再根据方差的定义,方差越小数据越稳定即可求解.
【详解】
解:(1)平均数:(32+39+45+55+60+54+60+28+56+41)=47,
中位数:49.5
众数:60
故答案为:47,49.5,60;
(2)第二组数据的平均数为:47,
S22=(16+81+9+1+49+36+100+0+9+1)=30.2
因为S12>S22,
所以,第二组西红柿长势比较整齐.
本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数,中位数与众数.熟练掌握方差公式是解决本题的关键.
15、 (1)6;(2) 930人;(3) 经典诗词诵背系列活动效果好,理由见解析
【解析】
(1)根据中位数的定义进行解答,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);
(2)用总人数乘以大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数所占的百分比即可;
(3)根据活动初的平均数、中位数与活动后的平均数、中位数进行比较,即可得出答案.
【详解】
(1)∵把这些数从小到大排列,最中间的数是第20和21个数的平均数,则中位数是(首);
(2)根据题意得:
(人),
估计大赛后一个月该校学生一周诗词背6首(含6首)以上的人数为930人.
(3)①活动初40名学生平均背诵首数为(首),
活动1个月后40名学生平均背诵首数为(首);
②活动初学生一周诗词诵背数量中位数为6,活动一个月后学生一周诗词诵背数量中位数为7;
根据以上数据分析,该校经典诗词诵背系列活动效果好.
考查条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
16、(1)b2;(2).
【解析】
(1)利用完全平方公式展开,然后再合并同类项即可;
(2)利用分式的基本性质通分,约分,然后再根据同分母的分式的加法法则计算即可.
【详解】
(1)原式= ;
(2)原式=
.
本题主要考查整式的加减及分式的加减运算,掌握去括号,合并同类项的法则和分式的基本性质是解题的关键.
17、 (1)、、;(2); (3); (4)
【解析】
(1)根据多项式乘多项式的乘法计算可得;
(2)利用(1)中已知等式得出该等式的结果为a、b两数n次幂的差;
(3)将原式变形为,再利用所得规律计算可得;
(4)将原式变形为,再利用所得规律计算可得.
【详解】
(1)第1个:;
第2个:;
第3个:;
故答案为:、、;
(2)若n为大于1的正整数,
则,
故答案为:;
(3)
,
故答案为:;
(4)
,
故答案为:.
本题考查了多项式乘以多项式以及平方差公式,观察等式发现规律是解题关键.
18、
【解析】
首先过点A作AD⊥BC,根据Rt△ADC和Rt△ABD的勾股定理分别求出CD和BD的长度,从而得出BC的长度
【详解】
过点A作AD⊥BC,则△ADC和△ABD为直角三角形
∵∠C=30° AC=4cm ∴AD=2cm CD=cm
根据Rt△ABD的勾股定理可得:BD=cm
∴BC=BD+CD=()cm
本题考查直角三角形的勾股定理,解题关键在于能够构造出直角三角形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、且.
【解析】
根据二次根式的性质以及分式的意义,分别得出关于的关系式,然后进一步加以计算求解即可.
【详解】
根据二次根式的性质以及分式的意义可得:,且,
∴且,
故答案为:且.
本题主要考查了二次根式的性质与分式的性质,熟练掌握相关概念是解题关键.
20、1
【解析】
由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴BC=AD=8,
∵点E、F分别是BD、CD的中点,
∴EF=BC=×8=1.
故答案为1.
此题考查了平行四边形的性质与三角形中位线的性质.熟练掌握相关性质是解题关键.
21、4x(x+1)(x-1)
【解析】
4x3-4x=4x(x2-1)=4x(x+1)(x-1).
故答案为4x(x+1)(x-1).
22、4a
【解析】
【分析】根据二次根式乘法法则进行计算即可得.
【详解】
=
=
=4a,
故答案为4a.
【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.
23、x≤1
【解析】
先利用正比例函数解析式确定点坐标,然后利用函数图象,写出直线在直线上方所对应的自变量的范围即可.
【详解】
解:把代入得,解得,则,
根据图象得,当时,.
故答案为:
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的集合.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析.
【解析】
试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;
(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.
试题解析:
证明:(1)选取①②,
∵在△BEO和△DFO中,
∴△BEO≌△DFO(ASA);
(2)由(1)得:△BEO≌△DFO,
∴EO=FO,BO=DO,
∵AE=CF,
∴AO=CO,
∴四边形ABCD是平行四边形.
点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.
25、(1)文学书和科普书的单价分别是8元和1元.(2)至多还能购进466本科普书.
【解析】
(1)设文学书的单价为每本x元,则科普书的单价为每本(x+4)元,依题意得:
,
解得:x=8,
经检验x=8是方程的解,并且符合题意.
∴x+4=1.
∴购进的文学书和科普书的单价分别是8元和1元.
②设购进文学书550本后至多还能购进y本科普书.依题意得
550×8+1y≤10000,
解得,
∵y为整数,
∴y的最大值为466
∴至多还能购进466本科普书.
26、(1)见解析;(2)见解析.
【解析】
(1)根据正方形的性质和DP⊥CQ于点E可以得到证明△BCQ≌△CDP的全等条件;
(2)根据(1)得到BQ=PC,然后连接OB,根据正方形的性质可以得到证明△BOQ≌△COP的全等条件,然后利用全等三角形的性质就可以解决题目的问题.
【详解】
证明:(1)∵四边形ABCD是正方形,
∴∠B=∠PCD=90°,BC=CD,
∴∠2+∠3=90°,
又∵DP⊥CQ,
∴∠2+∠1=90°,
∴∠1=∠3,
在△BCQ和△CDP中,
∴△BCQ≌△CDP;
(2)连接OB,
由(1)△BCQ≌△CDP可知:BQ=PC,
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC,
∵点O是AC中点,
∴BO=AC=CO,∠4=∠ABC=45°=∠PCO,
在△BOQ和△COP中,
∴△BOQ≌△COP,
∴OQ=OP.
解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,利用它们构造证明全等三角形的条件,然后通过全等三角形的性质解决问题.
题号
一
二
三
四
五
总分
得分
批阅人
一周诗词诵背数量
3首
4首
5首
6首
7首
8首
人数
1
3
5
6
10
15
相关试卷
这是一份2025届浙江省杭州拱墅区七校联考九年级数学第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届内蒙古杭锦后旗四校联考数学九年级第一学期开学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年浙江省台州黄岩区六校联考九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。