2025届浙江省新昌县联考数学九上开学综合测试试题【含答案】
展开
这是一份2025届浙江省新昌县联考数学九上开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)以下列长度为边长的三角形是直角三角形的是( )
A.5,6,7B.7,8,9C.6,8,10D.5,7,9
2、(4分)下列命题是真命题的是( )
A.四边都是相等的四边形是矩形B.菱形的对角线相等
C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形
3、(4分)如图,▱ABCD的对角线AC,BD交于点O,E为AB的中点,G为BC延长线上一点,射线EO与∠ACG的角平分线交于点F,若AC=5,BC=6,则线段EF的长为( )
A.5B.C.6D.7
4、(4分)下列多项式能分解因式的是( )
A.B.C.D.
5、(4分)匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是( )
A.B.
C.D.
6、(4分)如图,数轴上的点A所表示的数是( )
A.B.C.D.
7、(4分)为了解学生的体能情况,抽取某学校同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为( )
A.5
B.10
C.15
D.20
8、(4分)把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为( )
A.等于4cmB.小于4cm
C.大于4cmD.小于或等于4cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知△ABC 的一边长为 10,另两边长分别是方程 x2 14 x 48 0 的两个根若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是_______________.
10、(4分)计算:(﹣4ab2)2÷(2a2b)0=_____.
11、(4分)若代数式在实数范围内有意义,则实数x的取值范围是______.
12、(4分)若A(﹣1,y1)、B(﹣1,y1)在y=图象上,则y1、y1大小关系是y1_____y1.
13、(4分)计算:×=____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级学生参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下(单位:分):
七年级 88 94 90 94 84 94 99 94 99 100
八年级 84 93 88 94 93 98 93 98 97 99
整理数据:按如下分数段整理数据并补全表格:
分析数据:补全下列表格中的统计量:
得出结论:你认为哪个年级学生“汉字听写”大赛的成绩比较好?并说明理由.(至少从两个不同的角度说明推断的合理性)
15、(8分)在△ABC中,AB=AC=10,D为BC边上的中点,BD=6,连接AD.
(1)尺规作图:作AC边的中垂线交AD于点P;(保留作图痕迹,不要求写作法和证明)
(2)连接CP,求△DPC的周长.
16、(8分)如图,菱形的对角线、相交于点,,,连接.
(1)求证:;
(2)探究:当等于多少度时,四边形是正方形?并证明你的结论.
17、(10分)利用对称性可设计出美丽的图案.在边长为1的方格纸中,有如图所示的四边形(顶点都在格点上).
(1)先作出该四边形关于直线成轴对称的图形,再作出你所作的图形连同原四边形绕0点按顺时针方向旋转90后的图形;
(2)完成上述设计后,整个图案的面积等于_________.
18、(10分)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.
(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;
(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;
(3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简:_____.
20、(4分)若关于x的方程的解是负数,则a的取值范围是_____________。
21、(4分)在甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为=0.56,=0.60,=0.45,=0.50,则成绩最稳定的是______.
22、(4分)分解因式=____________.
23、(4分)若不等式组的解集是,那么m的取值范围是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:在平行四边形ABCD中,点E、F分别在AD和BC上,点G、H在AC上,且AE=CF,AH=CG.
求证:四边形EGFH是平行四边形.
25、(10分)解不等式组:,并在数轴上表示出它的解集.
26、(12分)如图,在中,点,分别在,上,且,连结、.
求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.
【详解】
解:A、因为52+62≠72,所以三条线段不能组成直角三角形;
B、因为72+82≠92,所以三条线段不能组成直角三角形;
C、因为62+82=102,所以三条线段能组成直角三角形;
D、因为52+72≠92,所以三条线段不能组成直角三角形;
故选:C.
此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.
2、D
【解析】
根据矩形的判定定理,菱形的性质,正方形的判定判断即可得到结论.
【详解】
A、四边都相等的四边形是菱形,故错误;
B、矩形的对角线相等,故错误;
C、对角线互相垂直的平行四边形是菱形,故错误;
D、对角线相等的平行四边形是矩形,正确,
故选D.
熟练掌握特殊平行四边形的各自特点,矩形对角线相等,邻边垂直.菱形对角线垂直且平分对角,邻边相等.同时具备矩形和菱形的四边形是正方形.
3、B
【解析】
只要证明OF=OC,再利用三角形的中位线定理求出EO即可解决问题.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC=,
∵AE=EB,
∴EF∥BC,OE=BC=3,
∴∠F=∠FCG,
∵∠FCG=∠FCO,
∴∠F=∠FCO,
∴OF=OC=,
∴EF=EO+OF=,
故选B.
本题考查平行四边形的性质、三角形的中位线定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
4、B
【解析】
直接利用分解因式的基本方法分别分析得出答案.
【详解】
解:A、x2+y2,无法分解因式,故此选项错误;
B、x2y-xy2=xy(x-y),故此选项正确;
C、x2+xy+y2,无法分解因式,故此选项错误;
D、x2+4x-4,无法分解因式,故此选项错误;
故选:B.
本题考查对分解因式的方法的理解和运用,分解因式的步骤是:第一步,先看看能否提公因式;第二步,再运用公式法,①平方差公式:a2-b2=(a+b)(a-b);② a2±2ab+b2=(a±b)2,第三步:再考虑用其它方法,如分组分解法等.
5、C
【解析】
根据注水的容器可知最底层h上升较慢,中间层加快,最上一层更快,即可判断.
【详解】
∵匀速地向如图的容器内注水,
由注水的容器可知最底层底面积大,h上升较慢,中间层底面积较小,高度h上升加快,最上一层底面积最小,h上升速度最快,故选C.
此题主要考查函数图像的识别,解题的关键是根据题意找到对应的函数图像.
6、A
【解析】
由题意,利用勾股定理求出点A到−1的距离,即可确定出点A表示的数.
【详解】
根据题意得:数轴上的点A所表示的数为−1=,
故选:A.
此题考查了实数与数轴,弄清点A表示的数的意义是解本题的关键.
7、B
【解析】
根据频率= ,即可求得总数,进而即可求得第四小组的频数.
【详解】
解:总数是5÷0.1=50人;
则第四小组的频数是50×(1-0.1-0.3-0.4)=50×0.2=10,
故选B.
本题考查频率的计算公式,解题关键是熟记公式.
8、D
【解析】
试题分析:本题中如果平移的方向是垂直向上或垂直向下,则平移后的两直线之间的距离为4cm;如果平移的方向不是垂直向上或垂直向下,则平移后的两直线之间的距离小于4cm;故本题选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
求出方程的解,根据勾股定理的逆定理得出三角形ABC是直角三角形,根据已知得出圆形正好是△ABC的外接圆,即可求出答案.
【详解】
解:解方程x2-14x+48=0得:x1=6,x2=8,
即△ABC的三边长为AC=6,BC=8,AB=10,
∵AC2+BC2=62+82=100,AB2=100,
∴AB2=AC2+BC2,
∴∠C=90°
∵若用一圆形纸片将此三角形完全覆盖,
则该圆形纸片正好是△ABC的外接圆,
∴△ABC的外接圆的半径是AB=1,
故答案为1.
本题考查勾股定理的逆定理,三角形的外接圆与外心,解一元二次方程的应用.
10、16a2b1
【解析】
直接利用整式的除法运算法则以及积的乘方运算法则计算得出答案.
【详解】
解:(-1ab2)2÷(2a2b)0=16a2b1÷1=16a2b1,
故答案为:16a2b1.
本题主要考查了整式的乘除运算和零指数幂,正确掌握相关运算法则是解题关键.
11、x≠
【解析】
根据分式的分母不为0可得关于x的不等式,解不等式即得答案.
【详解】
解:∵代数式在实数范围内有意义,∴2x-1≠0,解得:x≠.
故答案为:x≠.
此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.
12、>
【解析】
根据反比例函数的图象和性质,再根据点的横坐标的大小,判断纵坐标的大小.
【详解】
∵y=图象在一、三象限,在每个象限内y随x的增大而减小,
A(﹣1,y1)、B(﹣1,y1)都在第三象限图象上的两点,
∵﹣1<﹣1,
∴y1>y1,
故答案为:>.
考查比例函数的图象和性质,当k>0,在每个象限内,y随x的的增大而减小,是解决问题的依据.
13、
【解析】
直接利用二次根式乘法运算法则化简得出答案.
【详解】
=.
故答案为.
此题主要考查了二次根式的乘法运算,正确掌握二次根式乘法运算法则是解题关键.
三、解答题(本大题共5个小题,共48分)
14、整理数据:八年级段1人,段1人;分析数据:七年级众数94,八年级中位数93.5;得出结论:八年级学生大赛的成绩比较好,见解析.
【解析】
整理数据:根据八年级抽取10名学生的成绩,可得;
分析数据:根据题目给出的数据,利用众数的定义,中位数的定义求出即可;
得出结论:根据给出的平均数和方差分别进行分析,即可得出答案.
【详解】
解:整理数据:八年级段1人,段1人
分析数据,由题意,可知94分出现次数最多是4次,所以七年级10名学生的成绩众数是94,
将八年级10名学生的成绩从小到大排列为:84,88,93,93,93,94,97,98,98,99,
中间两个数分别是93,94,(93+94)÷2=93.5,
所以八年级10名学生的成绩中位数是93.5;
得出结论:认为八年级学生大赛的成绩比较好.
理由如下:八年级学生大赛成绩的平均数较高,表示八年级学生大赛的成绩较好;
八年级学生大赛成绩的方差小,表示八年级学生成绩比较集中,整体水平较好.
故答案为:整理数据:八年级段1人,段1人;分析数据:七年级众数94,八年级中位数93.5;得出结论:八年级学生大赛的成绩比较好,见解析.
本题考查平均数、中位数、众数、方差的意义及求法,理解各个统计量的意义,明确各个统计量的特点是解决问题的前提和关键.
15、(1)见解析;(2)1
【解析】
(1)利用基本作图作AC的垂直平分线得到点P;
(2)根据线段垂直平分线的性质得到PA=PC,则利用等线段代换得到△DPC的周长=DA+DC,再根据等腰三角形的性质得到AD⊥BC,利用勾股定理计算出AD=8,从而可计算出△DPC的周长.
【详解】
解:(1)如图,点D为所作;
(2)∵AC边的中垂线交AD于点P,
∴PA=PC,
∴△DPC的周长=DP+DC+PC=DP+PA+DC=DA+DC,
∵AB=AC=10,D为BC边上的中点,
∴AD⊥BC,CD=BD=6,
∴AD==8,
∴△DPC的周长=8+6=1.
本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.
16、(1)见解析;(2)当时,四边形OCED为正方形,见解析.
【解析】
(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,由矩形的性质可得OE=DC;
(2)当∠ABC=90°时,四边形OCED是正方形,根据正方形的判定方法证明即可.
【详解】
解:(1)证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是菱形,
∴∠COD=90°,
∴四边形OCED是矩形,
∴OE=DC;
(2)当∠ABC=90°时,四边形OCED是正方形,
理由如下:
∵四边形ABCD是菱形,∠ABC=90°,
∴四边形ABCD是正方形,
∴DO=CO,
又∵四边形OCED是矩形,
∴四边形OCED是正方形.
本题考查了菱形的性质,矩形的判定与性质,正方形的判定和性质,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
17、(1)图见解析; (2)1
【解析】
(1)根据图形对称的性质先作出关于直线l的对称图形,再作出所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形即可;
(2)先利用割补法求出原图形的面积,由图形旋转及对称的性质可知经过旋转与轴对称所得图形与原图形全等即可得出结论.
【详解】
解:(1)作图如图所示:
先作出关于直线l的对称图形;再作出所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形.
(2)∵边长为1的方格纸中一个方格的面积是1,
∴原图形的面积为5,
∴整个图案的面积=4×5=1.
故答案为:1.
点睛:本题考查的是利用旋转及轴对称设计图案,熟知经过旋转与轴对称所得图形与原图形全等是解答此题的关键.
18、(1)△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF;(1)AE⊥DF,详见解析;(3)详见解析
【解析】
(1)根据正方形的性质得到相关的条件找出全等的三角形:△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF;
(1)利用正方形的性质证明△ADE≌△BCE,再利用全等的关系求出∠AHD=90°,得到AE⊥DF;
(3)利用(1)中结论,及正方形的性质证明△DCM≌△BCE,得到CE=CM,结合点E为DC的中点即可证明点M为BC的中点.
【详解】
解:(1)∵四边形ABCD是正方形,
∴AB=AD=BC=DC,∠DAC=∠BAC=∠DCA=∠BCA=23°,
又∵AF=AF,
∴△ADF≌△ABF,
∵AC=AC,
∴△ADC≌△ABC,
∵CF=CF,
∴△CDF≌△CBF,
∴全等的三角形有:△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF.
(1)AE⊥DF.
证明:设AE与DF相交于点H.
∵四边形ABCD是正方形,
∴AD=AB,∠DAF=∠BAF.
又∵AF=AF,
∴△ADF≌△ABF.
∴∠1=∠1.
又∵AD=BC,∠ADE=∠BCE=90°,DE=CE,
∴△ADE≌△BCE.
∴∠3=∠2.
∵∠1+∠2=90°,
∴∠1+∠3=90°,
∴∠AHD=90°.
∴AE⊥DF.
(3)如图,∵∠ADE=90°,AE⊥DF.
∴∠1+∠3=90°,∠3+∠1=90°.
∴∠3=∠3,
∵∠3=∠2,
∴∠2=∠3.
∵DC=BC,∠DCM=∠BCE=90°,
∴△DCM≌△BCE.
∴CE=CM,
又∵E为CD中点,且CD=CB,
∴CE=CD=BC,
∴CM=CB,即M为BC中点,
∴BM=MC.
主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
见详解.
【详解】
.
本题考查平方根的化简.
20、
【解析】
:把a看作常数,根据分式方程的解法求出x的表达式,再根据方程的解是负数列不等式组并求解即可:
【详解】
解:∵
∴
∵关于x的方程的解是负数
∴
∴
解得
本题考查了分式方程的解与解不等式,把a看作常数求出x的表达式是解题的关键.
21、丙
【解析】
方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
因为=0.56,=0.60,=0.45,=0.50,
所以
相关试卷
这是一份2025届浙江省杭州上城区七校联考九上数学开学综合测试模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届德州陵城区五校联考九上数学开学综合测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届安徽省宿州砀山县联考数学九上开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。