![2025届重庆开州区九年级数学第一学期开学检测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16249807/0-1728877528064/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届重庆开州区九年级数学第一学期开学检测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16249807/0-1728877528168/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届重庆开州区九年级数学第一学期开学检测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16249807/0-1728877528192/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届重庆开州区九年级数学第一学期开学检测试题【含答案】
展开
这是一份2025届重庆开州区九年级数学第一学期开学检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在框中解分式方程的4个步骤中,根据等式基本性质的是( )
A.①③B.①②C.②④D.③④
2、(4分)矩形一个内角的平分线把矩形的一边分成和,则矩形的周长为( )
A.和B.C.D.以上都不对
3、(4分)已知点P到x轴的距离为1,到y轴的距离为2,则点P的坐标不可能为( )
A.(1,2)B.(-2,-1)C.(2,-1)D.(2,1)
4、(4分)已知点,,三点都在反比例函数的图像上,则下列关系正确的是( ).
A.B.C.D.
5、(4分)函数 中,自变量 的取值范围是( )
A.B.C.D.
6、(4分)只用一种多边形不能镶嵌整个平面的是( )
A.正三角形B.正四边形C.正五边形D.正六边形
7、(4分)若n为任意整数,(n+11)2-n2的值总可以被k整除,则k等于( )
A.11 B.22 C.11或22 D.11的倍数
8、(4分)如图,中俄“海上联合—2017”军事演习在海上编队演习中,两艘航母护卫舰从同一港口O同时出发,一号舰沿南偏西30°方向以12海里/小时的速度航行,二号舰以16海里/小时速度航行,离开港口1.5小时后它们分别到达A,B两点,相距30海里,则二号舰航行的方向是( )
A.南偏东30°B.北偏东30°C.南偏东 60°D.南偏西 60°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,“今有直角三角形,勾(短直角边)长为5,股(长直角边)长为12,河该直角三角形能容纳的如图所示的正方形边长是多少?”,该问题的答案是______.
10、(4分)若分式 有意义,则的取值范围是_______________ .
11、(4分)若一个多边形的内角和与外角和之和是900°,则该多边形的边数是_____.
12、(4分)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(-3,),AB=1,AD=2,将矩形ABCD向右平移m个单位,使点A,C恰好同时落在反比例函数y=的图象上,得矩形A′B′C′D′,则反比例函数的解析式为______.
13、(4分)人体中红细胞的直径约为0.0000077 m,数据0.0000077用科学记数法表示为________
三、解答题(本大题共5个小题,共48分)
14、(12分)在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.
15、(8分)甲、乙两人分别加工100个零件,甲第1个小时加工了10个零件,之后每小时加工30个零件.乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务.设甲、乙两人各自加工的零件数为(个),甲加工零件的时间为(时),与之间的函数图象如图所示.
(1)在乙追赶甲的过程中,求乙每小时加工零件的个数.
(2)求甲提高加工速度后甲加工的零件数与之间的函数关系式.
(3)当甲、乙两人相差12个零件时,直接写出甲加工零件的时间.
16、(8分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:
方案一:买一件甲种商品就赠送一件乙种商品;
方案二:按购买金额打八折付款.
某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.
(1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;
(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
17、(10分)如图,平行四边形中,对角线和相交于点,且
(1)求证:;
(2)若,求的长.
18、(10分)在平面直角坐标系中,三个顶点的坐标分别是,,.
(1)将绕点旋转,请画出旋转后对应的;
(2)将沿着某个方向平移一定的距离后得到,已知点的对应点的坐标为,请画出平移后的;
(3)若与关于某一点中心对称,则对称中心的坐标为_____.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖_____元.
20、(4分)_____.
21、(4分)如图,在中,,,,若点P是边AB上的一个动点,以每秒3个单位的速度按照从运动,同时点Q从以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。在运动过程中,设运动时间为t,若为直角三角形,则t的值为________.
22、(4分)已知△ABC的周长为4,顺次连接△ABC三边的中点构成的新三角形的周长为__________.
23、(4分)若x-y=,xy=,则代数式(x-1)(y+1)的值等于_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,边长为1的正方形组成的网格中,的顶点均在格点上,点、的坐标分是,.
(1)的面积为______;
(2)点在轴上,当的值最小时,在图中画出点,并求出的最小值.
25、(10分)某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时出发,已知先遣队的行进速度是大部队行进速度的1.2倍,预计先遣队比大部队早0.5小时到达目的地,求先遣队与大部队的行进速度。
26、(12分)(1)在图中以正方形的格点为顶点,画一个三角形,使三角形的边长分别为、2、;
(2)求此三角形的面积及最长边上的高.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质1,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.
【详解】
①根据等式的性质1,等式的两边都乘同一个不为零的整式x﹣1,结果不变;
②根据去括号法则;
③根据等式的性质1,等式的两边都加同一个整式3﹣x,结果不变;
④根据合并同类项法则.
根据等式基本性质的是①③.
故选A.
本题考查了等式的性质,利用了等式的性质1,等式的性质1.
2、A
【解析】
利用角平分线得到∠ABE=∠CBE,矩形对边平行得到∠AEB=∠CBE.那么可得到∠ABE=∠AEB,可得到AB=AE.那么根据AE的不同情况得到矩形各边长,进而求得周长.
【详解】
∵矩形ABCD中BE是角平分线.
∴∠ABE=∠EBC.
∵AD∥BC.
∴∠AEB=∠EBC.
∴∠AEB=∠ABE.
∴AB=AE.
平分线把矩形的一边分成3cm和5cm.
当AE=3cm时:则AB=CD=3cm,AD=CB=8cm则矩形的周长是:22cm;
当AE=5cm时:AB=CD=5cm,AD=CB=8cm,则周长是:26cm.
故选A.
本题主要运用了矩形性质,角平分线的定义和等角对等边知识,正确地进行分情况讨论是解题的关键.
3、A
【解析】
根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点P可能的横坐标与纵坐标,即可得解.
【详解】
∵点P到x轴的距离为1,到y轴的距离为2,
∴点P的横坐标为2或-2,纵坐标为1或-1,
∴点P的坐标不可能为(1,2).
故选A.
本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.
4、B
【解析】
解:∵,∴,,即.故选B.
5、D
【解析】
试题分析:根据分式有意义的条件是分母不为1;分析原函数式可得关系式x+1≠1,解可得答案.
解:根据题意可得x+1≠1;
解得x≠﹣1;
故选D.
【点评】本题主要考查函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为1.
6、C
【解析】
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.
【详解】
解:A、正三角形的每个内角是60°,能整除360°,能镶嵌整个平面;
B、正四边形的每个内角是90°,能整除360°,能镶嵌整个平面;
C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能镶嵌整个平面;
D、正六边形的每个内角是120°,能整除360°,能镶嵌整个平面.
故选:C.
本题考查了平面镶嵌(密铺),用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.
7、D
【解析】
试题分析:根据平方差公式分解因式即可判断。
∵(n+11)2-n2=(n+11+n)(n+11-n)=11(2n+11),
∴(n+11)2-n2的值总可以被11的倍数整除,
故选D.
考点:本题考查的是因式分解的简单应用
点评:解答本题的关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b).
8、C
【解析】
【分析】由题意可知OA=18,OB=24,AB=30,由勾股定理逆定理可知∠AOB=90°,结合方位角即可确定出二号舰的航行方向.
【详解】如图,由题意得:OA=12×1.5=18,OB=16×1.5=24,
∵AB=30,
∴OA2+OB2=182+242=900=302=AB2,
∴∠AOB=90°,
∵∠AOC=30°,
∴∠BOC=∠AOB-∠AOC=60°,
∴二号舰航行的方向是南偏东 60°,
故选C.
【点睛】本题考查了方位角、勾股定理逆定理,熟练掌握勾股定理逆定理是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据锐角三角函数的定义以及正方形的性质即可求出答案.
【详解】
解:设正方形的边长为x,
∴CE=ED=x,
∴AE=AC-CE=12-x,
在Rt△ABC中,
,
在Rt△ADE中,
,
∴,
∴解得:x=,
故答案为:.
本题考查三角形的综合问题,解题的关键是熟练运用锐角三角函数的定义以及正方形的性质,本题属于中等题型.
10、
【解析】
【分析】根据分式有意义的条件进行求解即可得.
【详解】由题意得:x-1≠0,
解得:x≠1,
故答案为:x≠1.
【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.
11、1
【解析】
先根据已知条件以及多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.
【详解】
解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,
∴多边形的内角和是900﹣360=140°,
∴多边形的边数是:140°÷180°+2=3+2=1.
故答案为:1.
本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n边形的内角和为:(n-2) ×180°, n边形的外角和为:360°.
12、y=
【解析】
由四边形ABCD是矩形,得到AB=CD=1,BC=AD=2,根据A(-3,),AD∥x轴,即可得到B(-3,),C(-1,),D(-1,);根据平移的性质将矩形ABCD向右平移m个单位,得到A′(-3+m,),C(-1+m,),由点A′,C′在在反比例函数y=(x>0)的图象上,得到方程(-3+m)=(-1+m),即可求得结果.
【详解】
解:∵四边形ABCD是矩形,
∴AB=CD=1,BC=AD=2,
∵A(-3,),AD∥x轴,
∴B(-3,),C(-1,),D(-1,);
∵将矩形ABCD向右平移m个单位,
∴A′(-3+m,),C(-1+m,),
∵点A′,C′在反比例函数y=(x>0)的图象上,
∴(-3+m)=(-1+m),
解得:m=4,
∴A′(1,),
∴k=,
∴反比例函数的解析式为:y=.
故答案为y=.
本题考查了矩形的性质,图形的变换-平移,反比例函数图形上点的坐标特征,求反比例函数的解析式,掌握反比例函数图形上点的坐标特征是解题的关键.
13、
【解析】
根据科学记数法的一般形式进行解答即可.
【详解】
解:0.0000077=.
故答案为:.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
三、解答题(本大题共5个小题,共48分)
14、答案不唯一,具体见解析
【解析】
解:
或
或
或
15、(1)在乙追赶甲的过程中,乙每小时加工零件60个;(2)();(3)甲加工零件的时间是时、时或时
【解析】
(1)根据题意可以求出甲所用时间,继而可得出在乙追赶甲的过程中,乙每小时加工零件的个数;
(2)根据题意和函数图象中的数据可以求出甲提高加工速度后甲加工的零件数与之间的函数关系式;
(3)列一元一次方程求解即可;
【详解】
解:(1)甲加工100个零件用的时间为:(小时),
∴在乙追赶甲的过程中,乙每小时加工零件的个数为:,
答:在乙追赶甲的过程中,乙每小时加工零件60个;
(2)设甲提高加工速度后甲加工的零件数与之间的函数关系式是,
,得,
即甲提高加工速度后甲加工的零件数与之间的函数关系式是();
(3)当甲、乙两人相差12个零件时,甲加工零件的时间是时、时或时,
理由:令,
解得,,,
令,
解得,
即当甲、乙两人相差12个零件时,甲加工零件的时间是时、时或时.
本题考查的知识点是一次函数的应用,解题的关键是理解一次函数图象,能够从图象中得出相关的信息.
16、(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.
【解析】
(1)根据方案即可列出函数关系式;
(2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.
解:(1) 得:;
得:;
(2)
,
因为w是m的一次函数,k=-4
相关试卷
这是一份2024年重庆市开州区镇东初级中学数学九上开学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年重庆市开州区九上数学开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份[数学]2023_2024学年重庆开州区开州区文峰初级中学初三上学期开学考试数学试卷(原题版+解析版),文件包含数学2023_2024学年重庆开州区开州区文峰初级中学初三上学期开学考试数学试卷解析版pdf、数学2023_2024学年重庆开州区开州区文峰初级中学初三上学期开学考试数学试卷原题版pdf等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。