![2025届重庆市渝中学区巴蜀中学九年级数学第一学期开学考试试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16249860/0-1728879024364/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届重庆市渝中学区巴蜀中学九年级数学第一学期开学考试试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16249860/0-1728879024393/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届重庆市渝中学区巴蜀中学九年级数学第一学期开学考试试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16249860/0-1728879024427/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届重庆市渝中学区巴蜀中学九年级数学第一学期开学考试试题【含答案】
展开
这是一份2025届重庆市渝中学区巴蜀中学九年级数学第一学期开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列几组数中,不能作为直角三角形三边长度的是( )
A.3,4,5B.5,7,8C.8,15,17D.1,
2、(4分)已知四边形ABCD是平行四边形,下列结果正确的是( )
A.当AB=BC时,它是矩形B.时,它是菱形
C.当∠ABC=90°时,它是菱形D.当AC=BD时,它是正方形
3、(4分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒。设平均每次降价的百分率为,根据题意所列方程正确的是( )
A.B.C.D.
4、(4分)下列计算正确的是( )。
A.B.C.D.
5、(4分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是( )
A.AB=ACB.AB=BCC.BE平分∠ABCD.EF=CF
6、(4分)不等式2x-1≤3的解集是( )
A.x≤1B.x≤2C.x≥1D.x≤-2
7、(4分)已知是完全平方式,则的值为( )
A.6B.C.12D.
8、(4分)下列关于的方程中,有实数解的为( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知等腰三角形两条边的长为4和9,则它的周长______.
10、(4分)如图,在△MBN 中,已知:BM=6,BN=7,MN=10,点 A C,D 分别是 MB,NB,MN 的中点,则四边形 ABCD 的周长 是_____.
11、(4分)已知:等腰三角形ABC的面积为30,AB=AC= 10,则底边BC的长度为_________ m.
12、(4分)若分式方程 无解,则等于___________
13、(4分)某公司招聘英语翻译,听、说、写成绩按3∶3∶2计入总成绩.某应聘者的听、说、写成绩分别为80分,90分,95分(单项成绩和总成绩满分均为百分制),则他的总成绩为____________分.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在矩形ABCD中,AB=1,对角线AC、BD相交于点O,过点O作EF⊥AC分别交射线AD与射线CB于点E和点F,联结CE、AF.
(1)求证:四边形AFCE是菱形;
(2)当点E、F分别在边AD和BC上时,如果设AD=x,菱形AFCE的面积是y,求y关于x的函数关系式,并写出x的取值范围;
(3)如果△ODE是等腰三角形,求AD的长度.
15、(8分)五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
16、(8分)计算:
(1)+(π-2)0-|-5|+-2;
(2)+-1-(+1)(-1).
17、(10分)某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:
若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?
18、(10分)某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(千米),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图.
根据以上信息,解答下列问题:
(1)表中a= ,样本中“单次营运里程”不超过15千米的频率为 ;
(2)请把频数分布直方图补充完整;
(3)估计该公司5000个“单次营运里程”超过20千米的次数.(写出解答过程)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.
20、(4分)一组数据为5,7,3,,6,4. 若这组数据的众数是5,则该组数据的平均数是______.
21、(4分)如图,ABCD的对角线AC,BD交于点O,M是CD的中点,连接OM,若OM=2,则BC的长是______________.
22、(4分)计算: _______________.
23、(4分)在函数y=中,自变量x的取值范围是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知关于 x 的一元二次方程 x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.
(1)求 k 的取值范围;
(2)写出一个满足条件的 k 的值,并求此时方程的根.
25、(10分)八年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名八年级学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图均不完整),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了多少名学生?
(2)求扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数;
(3)请将条形统计图补充完整.
26、(12分)如图,在△ABC中,AC⊥BC,AC=BC,延长BC至E使BE=BA,过点B作BD⊥AE于点D,BD与AC交于点F,连接EF.
(1)求证:△ACE≌△BCF.
(2)求证:BF=2AD,
(3)若CE=,求AC的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据勾股定理的逆定理依次判断各项后即可解答.
【详解】
选项A,32+42=52,符合勾股定理的逆定理,能作为直角三角形三边长度;
选项B,52+72≠82,不符合勾股定理的逆定理,不能作为直角三角形三边长度;
选项C,82+152=172,符合勾股定理的逆定理,能作为直角三角形三边长度;
选项D,12+()2=()2,符合勾股定理的逆定理,能作为直角三角形三边长度.
故选B.
本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理判定三角形是否为直角三角形是解决问题的关键.
2、B
【解析】
根据矩形、菱形、正方形的的判定方法判断即可.
【详解】
解:A、当AB=BC时,平行四边形ABCD为菱形,所以A选项的结论错误;
B、当AC⊥BD时,平行四边形ABCD为菱形,所以B选项的结论正确;
C、当∠ABC=90°时,平行四边形ABCD为矩形,所以C选项的结论错误;
D、当AC=BD时,平行四边形ABCD为矩形,所以D选项的结论不正确.
故选:B.
本题考查了正方形的判定,也考查了菱形、矩形的判定方法.正方形的判定方法:先判定四边形是矩形,再判定这个矩形有一组邻边相等;先判定四边形是菱形,再判定这个菱形有一个角为直角.
3、C
【解析】
试题解析:第一次降价后的价格为36×(1-x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1-x)×(1-x),
则列出的方程是36×(1-x)2=1.
故选C.
4、C
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
解:(A)原式=,故A错误;
(B)原式=3,故B错误;
(C)原式=,故C正确;
(D)原式=2 ,故D错误;
故选:C
本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
5、A
【解析】
当AB=BC时,四边形DBFE是菱形.根据三角形中位线定理证明即可;当BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,当EF=FC,可证EF=BF,可得四边形DBFE是菱形,由此即可判断;
【详解】
解:当AB=BC时,四边形DBFE是菱形;
理由:∵点D、E、F分别是边AB、AC、BC的中点,
∴DE∥BC,EF∥AB,
∴四边形DBFE是平行四边形,
∵DE=BC,EF=AB,
∴DE=EF,
∴四边形DBFE是菱形.
故B正确,不符合题意,
当BE平分∠ABC时,∴∠ABE=∠EBC
∵DE∥BC,
∴∠CBE=∠DEB
∴∠ABE =∠DEB
∴BD=DE
∴四边形DBFE是菱形,
故C正确,不符合题意,
当EF=FC,
∵BF=FC
∴EF=BF,
∴四边形DBFE是菱形,
故D正确,不符合题意,
故选A.
本题考查三角形的中位线定理,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.
6、B
【解析】
首先移项,把-1移到不等式的右边,注意要变号,然后合并同类项,再把x的系数化为1,即可求出不等式的解集.
【详解】
解:2x-1≤3,
移项得:2x≤3+1,
合并同类项得:2x≤4,
把x的系数化为1得:x≤2,
故选:B.
此题主要考查了一元一次不等式的解法,解不等式时要注意:①移项时要注意符号的改变;②把未知数的系数化为1时,两边同时除以或乘以同一个负数时要改变不等号的方向.
7、D
【解析】
根据完全平方式的结构特征,即可求出m的值.
【详解】
解:∵是完全平方式,
∴;
故选择:D.
此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b)1=a1±1ab+b1.
8、C
【解析】
根据二次根式必须有意义,可以得到选项中的无理方程是否有解,从而可以解答本题.
【详解】
,
,
即故无解.
A错误;
,
又,
,
即故无解,
B错误;
,
,
即有解,
C正确;
,
,
,故无解.
D错误;
故选C.
此题考查无理方程,解题关键在于使得二次根式必须有意义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
分9是腰长与底边长两种情况讨论求解即可.
【详解】
①当9是腰长时,三边分别为9、9、4时,能组成三角形,
周长=9+9+4=1,
②当9是底边时,三边分别为9、4、4,
∵4+4<9,
∴不能组成三角形,
综上所述,等腰三角形的周长为1.
故答案为:1.
本题考查了等腰三角形的两腰相等的性质,难点在于要分情况讨论求解.
10、13
【解析】
根据中位线性质可以推出CD∥AB,AD∥BC,可得四边形ABCD为平行四边形,由中点可得四边形ABCD的周长
【详解】
∵点A,C,D分别是MB,NB,MN的中点,
∴CD∥AB,AD∥BC,
∴四边形ABCD为平行四边形,
∴AB=CD,AD=BC.
∵BM=6,BN=7,点A,C分别是MB,NB的中点,
∴AB=3,BC=3.5,
∴四边形ABCD的周长=(AB+BC)×2=(3+3.5)×2=13.
故答案为13
本题考查了中位线的性质,以及平行四边形的判定及性质,掌握中位线的性质及平行四边形的性质是解题的关键.
11、或
【解析】
作CD⊥AB于D,则∠ADC=∠BDC=90°,由三角形的面积求出CD,由勾股定理求出AD;分两种情况:①等腰△ABC为锐角三角形时,求出BD,由勾股定理求出BC即可;②等腰△ABC为钝角三角形时,求出BD,由勾股定理求出BC即可.
【详解】
作CD⊥AB于D,
则∠ADC=∠BDC=90°,△ABC的面积=AB⋅CD=×10×CD=30,
解得:CD=6,
∴AD==8m;
分两种情况:
①等腰△ABC为锐角三角形时,如图1所示:
BD=AB−AD=2m,
∴BC==;
②等腰△ABC为钝角三角形时,如图2所示:
BD=AB+AD=18m,
∴BC==;
综上所述:BC的长为或.
故答案为:或.
本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论等腰三角形.
12、
【解析】
先去分母,把分式方程的增根代入去分母后的整式方程即可得到答案.
【详解】
解:,
去分母得:,
所以:,
因为:方程的增根是,
所以:此时,
故答案为:.
本题考查分式方程无解时字母系数的取值,掌握把增根代入去分母后的整式方程是解题关键.
13、87.1
【解析】分析:运用加权平均数的公式直接计算.用80分,90分,91分,分别乘以3,3,2,再用它们的和除以8即可.
详解:由题意知,总成绩=(80×3+90×3+91×2)÷(3+3+2)=87.1(分).
故答案为:87.1.
点睛:本题考查的是加权平均数的求法.本题易出现的错误是直接求出80,90,91的平均数.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2);(3)AD的值为或.
【解析】
(1)由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.
(2)由cs∠DAC=,求出AE即可解决问题;
(3)分两种情形分别讨论求解即可.
【详解】
(1)①证明:如图1中,
∵四边形ABCD是矩形,
∴AD∥BC,OB=OD,
∴∠EDO=∠FBO,
在△DOE和△BOF中,
,
∴△DOE≌△BOF,
∴EO=OF,∵OB=OD,
∴四边形EBFD是平行四边形,
∵EF⊥BD,OB=OD,
∴EB=ED,
∴四边形EBFD是菱形.
(2)由题意可知:,,
∵,
∴,
∴,
∵AE≤AD,
∴,
∴x2≥1,
∵x>0,
∴x≥1.
即(x≥1).
(3)①如图2中,当点E在线段AD上时,ED=EO,则Rt△CED≌Rt△CEO,
∴CD=CO=AO=1,
在Rt△ADC中,AD=.
如图3中,当的E在线段AD的延长线上时,DE=DO,
∵DE=DO=OC,EC=CE,
∴Rt△ECD≌Rt△CEO,
∴CD=EO,
∵∠DAC=∠EAO,∠ADC=∠AOE=90°,
∴△ADC≌△AOE,
∴AE=AC,
∵EO垂直平分线段AC,
∴EA=EC,
∴EA=EC=AC,
∴△ACE是等边三角形,
∴AD=CD•tan30°=,
综上所述,满足条件的AD的值为或.
本题考查四边形综合题、矩形的性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.
15、(1)甲商品每件进价30元,乙商品每件进价70元;(2)甲商品进80件,乙商品进20件,最大利润是1200元.
【解析】
(1)根据购进甲商品1件和乙商品3件共需240元,甲商品2件和乙商品1件共需130元可以列出相应的方程组,从而可以求得甲、乙两种商品每件的进价分别是多少元;
(2)根据题意可以得到利润与购买甲种商品的函数关系式,从而可以解答本题.
【详解】
(1)设商品每件进价x元,乙商品每件进价y元,得
解得:,
答:甲商品每件进价30元,乙商品每件进价70元;
(2)设甲商品进a件,乙商品(100﹣a)件,由题意得,
a≥4(100﹣a),
a≥80,
设利润为y元,则,
y=10 a+20(100﹣a)=﹣10 a+2000,
∵y随a的增大而减小,
∴要使利润最大,则a取最小值,
∴a=80,
∴y=2000﹣10×80=1200,
答:甲商品进80件,乙商品进20件,最大利润是1200元.
本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
16、 (1) (2)2
【解析】
(1)根据二次根式的性质、零指数幂的性质、绝对值的性质及负整数指数幂的性质依次计算后合并即可求解;(2)根据二次根式的性质、负整数指数幂的性质及平方差公式依次计算后合并即可求解.
【详解】
(1)原式=2+1-5+=;
(2)原式=+4-(5-1)=+4-4=.
本题考查了二次根式的混合运算,熟练运用二次根式的性质、零指数幂的性质、绝对值的性质、负整数指数幂的性质、平方差公式及二次根式的混合运算顺序是解决问题的关键.
17、选择乙.
【解析】
由形体、口才、专业水平、创新能力按照4:6:5:5的比确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可,
【详解】
形体、口才、专业水平、创新能力按照4:6:5:5的比确定,
则甲的平均成绩为=91.2.
乙的平均成绩为4+6+5+5=91.8.
乙的成绩比甲的高,所以应该录取乙.
本题考查加权平均数,熟练掌握计算方法是解题的关键.
18、 (1)48,0.1;(2)见解析;(3)750次.
【解析】
(1)①由各组频数之和等于数据总数200可得出a的值;用第一、二、三组的频数和除以200可得;
(2)根据频数分布表中的数据可把频数分布直方图补充完整;
(3)用5000乘以样本中“单次营运里程”超过20公里的次数所占比例即可得.
【详解】
(1)a=200-(72+26+24+30)=48;
样本中“单次营运里程”不超过15公里的频率为
=0.1.
故答案为48,0.1;
(2)补全图形如下:
(3)5000×=750(次).
答:该公司这5000个“单次营运里程”超过20公里的次数约为750次.
本题考查读频数分布直方图的能力和利用统计表获取信息的能力;利用统计表获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、10
【解析】
当∠ABO=90°时,点O到顶点A的距离的最大,则△ABC是等腰直角三角形,据此即可求解.
【详解】
解:∵
∴当∠ABO=90°时,点O到顶点A的距离最大.
则OA=AB=10.
故答案是:10.
本题主要考查了等腰直角三角形的性质,正确确定点O到顶点A的距离的最大的条件是解题关键.
20、5
【解析】
首先根据众数的定义:是一组数据中出现次数最多的数值,即可得出,进而可求得该组数据的平均数.
【详解】
解:根据题意,可得
则该组数据的平均数为
故答案为5.
此题主要考查众数的理解和平均数的求解,熟练掌握,即可解题.
21、1
【解析】
证明是的中位线即可求解.
【详解】
解:四边形是平行四边形,
,
是中点,
,
∴是的中位线,
,
故答案为:1.
本题考查平行四边形的性质、三角形中位线定理等知识,解题的关键是根据平行四边形性质判断出是的中位线.
22、1
【解析】根据二次根式乘方的意义与二次根式乘法的运算法则,即可求得答案.
解:(-)1=(-)(-)=1.
故答案为:1.
23、x≥﹣2且x≠0
【解析】
根据题意得x+2≥0且x≠0,即x≥-2且x≠0.
二、解答题(本大题共3个小题,共30分)
24、方程的根
【解析】
(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;
(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.
【详解】
(1)∵关于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有两个不相等的实数根,
∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,
解得:k< .
(1)当k=0时,原方程为x1+1x=x(x+1)=0,
解得:x1=0,x1=﹣1.
∴当k=0时,方程的根为0和﹣1.
本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.
25、(1)560人;(2)54°;(3)补图见解析.
【解析】
分析:(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;
(2)由“主动质疑”占的百分比乘以360°即可得到结果;
(3)求出“讲解题目”的学生数,补全统计图即可;
详解:(1)根据题意得:224÷40%=560(名),
则在这次评价中,一个调查了560名学生;
故答案为:560;
(2)根据题意得:×360°=54°,
则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;
故答案为:54;
(3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:
点睛:此题考查了频率(数)分布直方图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.
26、 (1)证明见解析;(2)证明见解析;(3)2+.
【解析】
(1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根据垂直的定义得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,证得△BCF≌△ACE;
(2)由(1)得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到结论;
(3)由(1)知△BCF≌△ACE,推出CF=CE=,在Rt△CEF中,EF==2,由于BD⊥AE,AD=ED,求得AF=FE=2,于是结论即可.
【详解】
(1)∵AC⊥BC,BD⊥AE
∴∠FCB=∠BDA=90°
∠CBF+∠CFB=90°,∠DAF+∠AFD=90°
∵∠CFB=∠AFD
∴∠CBF=∠CAE
∵AC=BC
∴△ACE≌△BCF
(2)由(1)知△ACE≌△BCF得AE=BF
∵BE=BA,BD⊥AE
∴AD=ED,即AE=2AD
∴BF=2AD
(3)由(1)知△ACE≌△BCF
∴CF=CE=
∴在Rt△CEF中,EF==2,
∵BD⊥AE,AD=ED,
∴AF=FE=2,
∴AC=AF+CF=2+.
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,熟练掌握全等三角形的判定和性质定理是解题的关键.
题号
一
二
三
四
五
总分
得分
候选人
面试
笔试
形体
口才
专业水平
创新能力
甲
86
90
96
92
乙
92
88
95
93
组别
单次营运里程“x”(千米)
频数
第一组
0<x≤5
72
第二组
5<x≤10
a
第三组
10<x≤15
26
第四组
15<x≤20
24
第五组
20<x≤25
30
相关试卷
这是一份2024年重庆市渝中学区数学九年级第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市渝中学区巴蜀中学2023年八年级数学第一学期期末达标检测试题【含解析】,共21页。试卷主要包含了考生必须保证答题卡的整洁,已知,计算的结果是,下列运算不正确的是等内容,欢迎下载使用。
这是一份重庆市渝中学区巴蜀中学2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了若n<+1<n+1,则整数n为等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)