搜索
    上传资料 赚现金
    英语朗读宝

    安徽蚌埠铁路中学2024年九上数学开学统考试题【含答案】

    安徽蚌埠铁路中学2024年九上数学开学统考试题【含答案】第1页
    安徽蚌埠铁路中学2024年九上数学开学统考试题【含答案】第2页
    安徽蚌埠铁路中学2024年九上数学开学统考试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽蚌埠铁路中学2024年九上数学开学统考试题【含答案】

    展开

    这是一份安徽蚌埠铁路中学2024年九上数学开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若一个直角三角形的两边长为4和5,则第三边长为( )
    A.3B.C.8D.3或
    2、(4分)根据以下程序,当输入x=﹣2时,输出结果为( )
    A.﹣5B.﹣2C.0D.3
    3、(4分)化简(-1)2-(-3)0+得( )
    A.0B.-2C.1D.2
    4、(4分)某中学46名女生体育中考立定跳远成绩如下表:
    这些立定跳远成绩的中位数和众数分别是
    A.185,170B.180,170C.7.5,16D.185,16
    5、(4分)如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为( )
    A.B.C.D.
    6、(4分)若,则下列不等式一定成立的是( ).
    A.B.C.D.
    7、(4分)如图,矩形ABCD的对角线交于点O.若∠BAO=55°,则∠AOD等于( )
    A.110°B.115°C.120°D.125°
    8、(4分)下图入口处进入,最后到达的是( )
    A.甲B.乙C.丙D.丁
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)不等式2x≥-4的解集是 .
    10、(4分)直线y=x+1与y=-x+7分别与x轴交于A、B两点,两直线相交于点C,则△ABC的面积为___.
    11、(4分)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.
    12、(4分)菱形有一个内角是120°,其中一条对角线长为9,则菱形的边长为____________.
    13、(4分)若关于x的分式方程有增根,则m的值为_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上,作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标.
    15、(8分)已知:一次函数y=kx+b的图象经过M(0,2),(1,3)两点.
    ⑴求k,b的值;
    ⑵若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.
    16、(8分)2019 年 7 月 1 日,《上海市生活垃圾管理条例》正式实施,生活垃圾按照“可回收物”、 “有害垃圾”、“湿垃圾”、“干垃圾”的分类标准.没有垃圾分类和未指定投放到指定垃圾桶内等会被罚款和行政处罚.垃圾分类制度即将在全国范围内实施,很多商家推出售卖垃圾分类桶,某商店经销垃圾分类桶.现有如下信息:
    信息 1:一个垃圾分类桶的售价比进价高 12 元;
    信息 2:卖 3 个垃圾分类桶的费用可进货该垃圾分类桶 4 个;
    请根据以上信息,解答下列问题:
    (1)该商品的进价和售价各多少元?
    (2)商店平均每天卖出垃圾分类桶 16 个.经调查发现,若销售单价每降低 1 元,每天可多售出 2 个.为了使每天获取更大的利润,垃圾分类桶的售价为多少元时,商店每天获取的利润最大?每天的最大利润是多少?
    17、(10分)如图,已知一次函数y=x+b的图象与反比例函数y= (x3y,B错误;
    ,即C正确;
    ,错误;
    故答案为C;
    本题考查了不等式的基本性质,即给不等式两边同加或减去一个整数,不等号方向不变;给不等式两边同乘以一个正数,不等号方向不变;给不等式两边同乘以一个负数,不等号方向改变;
    7、A
    【解析】
    由矩形的对角线互相平分得,OA=OB,再由三角形的外角性质得到∠AOD等于∠BAO和∠ABO之和即可求解.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AC=BD,OA=OB,
    ∠BAO=∠ABO=55°,
    ∠AOD=∠BAO+∠ABO =55°+55°=110°.
    故答案为:A
    本题考查了矩形的性质及外角的性质,熟练利用外角的性质求角度是解题的关键.
    8、C
    【解析】
    根据平行四边形的性质和对角线的定义对命题进行判断即可.
    【详解】
    等腰梯形也满足此条件,可知该命题不是真命题;
    根据平行四边形的判定方法,可知该命题是真命题;
    根据题意最后最后结果为丙.
    故选C.
    本题考查命题和定理,解题关键在于熟练掌握平行四边形的性质和对角线的定义.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x≥-1
    【解析】
    分析:已知不等式左右两边同时除以1后,即可求出解集.
    解答:
    解:1x≥-4,
    两边同时除以1得:x≥-1.
    故答案为x≥-1.
    10、16
    【解析】
    在y=x+1中,令y=0,得x+1=0,
    解得x=−1,
    ∴点A的坐标为(−1,0),
    在y=−x+7中,令y=0,得−x+7=0,
    解得x=7,
    ∴点B的坐标为(7,0),
    联立两直线解析式得 ,
    解得,
    ∴点C的坐标为(3,4);
    即点C的纵坐标为4
    ∵AB=7−(−1)=8,
    ∴S△ABC =×8×4=16.
    故答案为16.
    11、135
    【解析】
    试题分析:如图,连接EE′,
    ∵将△ABE绕点B顺时针旋转30°到△CBE′的位置,AE=1,BE=3,CE=3,
    ∴∠EBE′=30°,BE=BE′=3,AE=E′C=1.
    ∴EE′=3,∠BE′E=45°.
    ∵E′E3+E′C3=8+1=3,EC3=3.∴E′E3+E′C3=EC3.
    ∴△EE′C是直角三角形,∴∠EE′C=30°.∴∠BE′C=135°.
    12、9 或
    【解析】
    如图,根据题意得:∠BAC=120°,易得∠ABC=60°,所以△ABC为等边三角形.如果AC=9,那么AB=9;如果BD=9,由菱形的性质可得边AB的长.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AD∥BC,∠ABD=∠CBD,OA=OC,OB=OD,AC⊥BD,AB=BC,
    ∵∠BAD=120°,
    ∴∠ABC=60°,
    ∴△ABC为等边三角形,
    如果AC=9,则AB=9,
    如果BD=9,
    则∠ABD=30°,OB=,
    ∴OA=AB,
    在Rt△ABO中,∠AOB=90°,∴AB2=OA2+OB2,
    即AB2=(AB)2 +()2,
    ∴AB=3,
    综上,菱形的边长为9或3.

    本题考查了菱形的性质,等边三角形的判定与性质,勾股定理等知识,熟练掌握相关知识是解题的关键.注意分类讨论思想的运用.
    13、1
    【解析】
    增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母,得到,然后代入化为整式方程的方程算出m的值.
    【详解】
    解:方程两边都乘,得
    ∵原方程有增根,
    ∴最简公分母,
    解得,
    当时,
    故m的值是1,
    故答案为1
    本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
    三、解答题(本大题共5个小题,共48分)
    14、C1的坐标为:(﹣3,﹣2)
    【解析】
    直接利用关于原点对称点的性质得出各对应点位置进而得出答案.
    【详解】
    如图所示:△A1B1C1,即为所求,点C1的坐标为:(﹣3,﹣2).
    此题主要考查了旋转变换,正确得出对应点位置是解题关键.
    15、⑴k,b的值分别是1和2;⑵a=-2
    【解析】
    (1)由题意得,解得;⑵由⑴得当y=0时,x=-2,
    【详解】
    解:⑴由题意得
    解得
    ∴k,b的值分别是1和2
    ⑵由⑴得
    ∴当y=0时,x=-2,
    即a=-2
    用待定系数法求一次函数解析式.
    16、(1)进价为36元,售价为48元;(2)当售价为46元时,商店每天获利最大,最大利润为:200元.
    【解析】
    (1)根据题意,设一个垃圾分类桶的进价为x元,则售价为(x+12)元,列出方程,解方程即可得到答案;
    (2)根据题意,可设每天获利为w,当垃圾分类桶的售价为y元时,每天获利w最大,然后列出方程,解出方程即可得到答案.
    【详解】
    解:(1)设一个垃圾分类桶的进价为x元,则售价为(x+12)元,则
    ,解得:,
    ∴售价为:36+12=48元.
    答:一个垃圾分类桶的进价为36元,售价为48元;
    (2)设每天获利为w,当一个垃圾分类桶的售价为y元时,每天获利最大,则

    整理得:;
    ∴当 时,商店每天获利最大,最大利润为:200元.
    该题以二次函数为载体,以二元一次方程组的应用、二次函数的性质及其应用为考查的核心构造而成;解题的关键是深入把握题意,准确找出命题中隐含的数量关系;灵活运用有关性质来分析、判断、解答.
    17、(1)k=−2,y=x+,;(2)(1,2);(3)(0,)
    【解析】
    (1)把A(-1,2)代入两个解析式即可得到结论;
    (2)根据关于y轴对称的点的特点即可得到结论;
    (3)作点A关于y轴对称A′,连接AA′交y轴于C,则△ABC的周长最小,解方程组得到B(-4, ),得到A′B的解析式为y=,即可得到结论.
    【详解】
    (1)∵一次函数y=x+b的图象与反比例函数y= (x6)得y=6×8−27=21(元).
    答:该户11 月份水费是21元.
    主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、120
    【解析】
    【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.
    【详解】设原计划每天种树x棵,则实际每天种树2x棵,
    依题可得:,
    解得:x=120,
    经检验x=120是原分式方程的根,
    故答案为:120.
    【点睛】本题考查了列分式方程解应用题,弄清题意,找出等量关系是解题的关键.
    20、.
    【解析】
    解:因为点M(a,2)是一次函数y=2x-3图象上的一点,
    ∴2=2a-3,
    解得a=
    故答案为:.
    21、9
    【解析】
    根据平行四边形的性质得到△ABE和△EDC的高相同,即可求出的面积为,再由进行解题即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD∥BC,即△ABE和△EDC的高相同,
    ∵,的面积为3,
    ∴的面积为,
    ∴四边形的面积=6+3=9
    故答案是:9
    本题考查了平行四边形的性质,平行线间的三角形的关系,属于基础题,熟悉平行四边形的性质是解题关键.
    22、1.
    【解析】
    由矩形的性质可得S△EBG=S△BGN,S△MDG=S△DFG,S△ABD=S△BDC,S△AEG=S四边形AEGM,S△FGC=S四边形GFCN,可得S四边形AEGM=S四边形GFCN,可得S△AEG=S△FGC=5,即可求解.
    【详解】
    解:如图,过点G作MN⊥AD于M,交BC于N,
    ∵EG=5,DF=2,
    ∴S△AEG=×5×2=5
    ∵AD∥BC,MN⊥AD
    ∴MN⊥BC,且∠BAD=∠ADC=∠DCB=∠ABC=90°,EF∥BC,
    易证:四边形AMGE是矩形,四边形MDFG是矩形,四边形GFCN是矩形,四边形EGNB是矩形
    ∴S△EBG=S△BGN,S△MDG=S△DFG,S△ABD=S△BDC,S△AEG=S四边形AEGM,S△FGC=S四边形GFCN,
    ∴S四边形AEGM=S四边形GFCN,
    ∴S△AEG=S△FGC=5
    ∴两块阴影部分的面积之和为1.
    故答案为:1.
    本题考查矩形的性质,证明S△AEG=S△FGC=5是解题的关键.
    23、1
    【解析】
    首先证明是等边三角形,求出,即可解决问题.
    【详解】
    解:由作图可知,
    四边形是平行四边形,
    ,,


    是等边三角形,

    ,,
    四边形的周长为1,
    故答案为1.
    本题考查作图复杂作图,平行四边形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    二、解答题(本大题共3个小题,共30分)
    24、 (1);(2),.
    【解析】
    (1)将(2,-1)代入y=kx-3,得到关于k的一元一次方程,解出k,即可求出一次函数的解析式;
    (2)分别令x=0,y=0可得出B和A的坐标.
    【详解】
    解:(1)将代入,得:
    ,解得,
    ∴;
    (2)当时,,
    ∴,
    当时,,
    解得:,
    ∴.
    故答案为(1)y=x-3;(2)A(3,0),B(0,-3).
    本题考查了待定系数法求函数解析式,难度不大,注意数形结合的运用.
    25、(1)P与V之间的函数表达式为;(2)为确保气球不爆炸,气球的体积应不小于0.96
    【解析】
    (1)设气球内气体的气压P(kPa)和气体体积V(m3)的反比例函数为,将V=0.8时,P=120,代入求出F,再将F的值代入,可得P与V之间的函数表达式。
    (2)为确保气球不爆炸,则 时,即,解出不等式解集即可。
    【详解】
    解:(1)设P与V之间的函数表达式为
    当V=0.8时,P=120,
    所以
    ∴F=96
    ∴P与V之间的函数表达式为
    (2)当 时,

    ∴为确保气球不爆炸,气球的体积应不小于0.96
    答(1)P与V之间的函数表达式为;(2)为确保气球不爆炸,气球的体积应不小于0.96
    现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
    26、(1);(2)
    【解析】
    (1)直接化简二次根式进而计算得出答案;
    (2)直接利用二次根式的乘法运算法则计算得出答案.
    【详解】
    (1)原式

    (2)原式

    此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
    题号





    总分
    得分
    批阅人
    跳远成绩
    160
    170
    180
    190
    200
    210
    人数
    3
    16
    6
    9
    8
    4

    相关试卷

    2024年安徽省宿州二中学数学九上开学统考模拟试题【含答案】:

    这是一份2024年安徽省宿州二中学数学九上开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年安徽省宿州地区数学九上开学统考试题【含答案】:

    这是一份2024年安徽省宿州地区数学九上开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年安徽省淮北市第二中学九上数学开学统考模拟试题【含答案】:

    这是一份2024年安徽省淮北市第二中学九上数学开学统考模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map