安徽省安庆宿松县联考2025届九上数学开学联考模拟试题【含答案】
展开这是一份安徽省安庆宿松县联考2025届九上数学开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一组数据1,l,,7,3,5,3,1的众数是1,则这组数据的中位数是( ).
A.1B.1.5C.3D.5
2、(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )
A.等边三角形B.等腰梯形C.正方形D.平行四边形
3、(4分)如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为( )
A.4B.3C.D.2
4、(4分)函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,那么使y1>y2的x的取值范围是( )
A.x>0B.x>1C.x>-1D.-1<x<2
5、(4分)把一些笔记本分给几个学生,如果每人分3本,那么余8本,如果每人分5本,则最后一个人分到的本数不足3本,则共有学生( )人.
A.4 B.5 C.6 D.5或6
6、(4分)在平面直角坐标系中,点A坐标为(2,2),点P在x轴上运动,当以点A,P、O为顶点的三角形为等腰三角形时,点P的个数为( )
A.2个B.3个C.4个D.5个
7、(4分)下列图形都是由同样大小的▲按一定规律组成的,其中第1个图形中一共有6个▲:第2个图形中一共有9个▲;第3个图形中一共有12个▲;…授此规律排列,则第2019个图形中▲的个数为( )
A.2022B.4040C.6058D.6060
8、(4分)如图,已知在平行四边形中,是对角线上的两点,则以下条件不能判断四边形是平行四边形的是( )
A.
B.
C.
D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,中,,点在上,,将线段沿方向平移得到线段,点分别落在边上,则的周长是 cm.
10、(4分)一组数据:3,5,9,12,6的极差是_________.
11、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,若再添加一个条件,就可得平行四边形ABCD是矩形,则你添加的条件是_____.
12、(4分)如图,矩形ABCD 的对角线AC,BD的交点为O,点E为BC边的中点,,如果OE=2,那么对角线BD的长为______.
13、(4分)当x___________时,是二次根式.
三、解答题(本大题共5个小题,共48分)
14、(12分)作一直线,将下图分成面积相等的两部分(保留作图痕迹).
15、(8分)某中学开展“我的中国梦”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.
(1)根据如图,分别求出两班复赛的平均成绩和方差;
(2)根据(1)的计算结果,分析哪个班级5名选手的复赛成绩波动小?
16、(8分)如图,正方形ABCD的对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F.
(1)求证:(BE+BF)2=2OB2;
(2)如果正方形ABCD的边长为a,那么正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积始终等于 (用含a的代数式表示)
17、(10分)我们可用表示以为自变量的函数,如一次函数,可表示为,且,,定义:若存在实数,使成立,则称为的不动点,例如:,令,得,那么的不动点是1.
(1)已知函数,求的不动点.
(2)函数(是常数)的图象上存在不动点吗?若存在,请求出不动点;若不存在,请说明理由;
(3)已知函数(),当时,若一次函数与二次函数的交点为,即两点的横坐标是函数的不动点,且两点关于直线对称,求的取值范围.
18、(10分)如图①,在正方形ABCD中,,点E,F分别在BC、CD上,,试探究面积的最小值。
下面是小丽的探究过程:
(1)延长EB至G,使,连接AG,可以证明.请完成她的证明;
(2)设,,
①结合(1)中结论,通过计算得到与x的部分对应值。请求出表格中a的值:(写出解答过程)
②利用上表和(1)中的结论通过描点、连线可以分别画出函数、的图像、请在图②中完善她的画图;
③根据以上探究,估计面积的最小值约为(结果估计到1.1)。
图① 图②
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)要使代数式有意义,则的取值范围是________.
20、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是________ .
21、(4分)菱形ABCD的周长为24,∠ABC=60°,以AB为腰在菱形外作底角为45°的等腰△ABE,连结AC,CE,则△ACE的面积为___________.
22、(4分)如图,将长8cm,宽4cm的矩形ABCD纸片折叠,使点A与C重合,则折痕EF的长为_________cm.
23、(4分)若数据10,9,a,12,9的平均数是10,则这组数据的方差是_____
二、解答题(本大题共3个小题,共30分)
24、(8分)嘉淇同学要证明命“两相对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图,在四边形ABCD中,
BC=AD,
AB=____.
求证:四边形ABCD是____四过形.
(1)在方框中填空,以补全已知和求证;
(2)按嘉淇的想法写出证明:
证明:
(3)用文宇叙述所证命题的逆命题为____________________.
25、(10分)下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:
①菜地离小明家多远?小明走到菜地用了多少时间?
②小明给菜地浇水用了多少时间?
③玉米地离菜地、小明家多远?小明从玉米地走回家平均速度是多少?
26、(12分)如图,一次函数的图象与反比例函数()的图象交于A(-3,2),B(n,4)两点.
(1)求一次函数与反比例函数的解析式;
(2)点C(-1,0)是轴上一点,求△ABC的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
数据1,1,x,7,3,2,3,1的众数是1,说明1出现的次数最多,所以当x=1时,1出现3次,次数最多,是众数;再把这组数据从小到大排列:1,1,1,1,3,3,2,7,处于中间位置的数是1和3,所以中位数是:(1+3)÷1=1.2.
故选B.
2、C
【解析】
根据轴对称图形和中心对称图形的概念,即可求解.
【详解】
解:A、B都只是轴对称图形;
C、既是轴对称图形,又是中心对称图形;
D、只是中心对称图形.
故选:C.
掌握好中心对称图形与轴对称图形的概念是解题的关键.
3、B
【解析】
根据平行四边形性质得出AB=DC,AD∥BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=DC,AD∥BC,
∴∠DEC=∠BCE,
∵CE平分∠DCB,
∴∠DCE=∠BCE,
∴∠DEC=∠DCE,
∴DE=DC=AB,
∵AD=2AB=2CD,CD=DE,
∴AD=2DE,
∴AE=DE=3,
∴DC=AB=DE=3,
故选B.
本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC.
4、A
【解析】
当x>0时,函数y1=x+1的图象在函数y2=ax+b(a≠0)的图象上方,据此可得使y1>y2的x的取值范围是x>0
【详解】
由图可得,当x>0时,函数y1=x+1的图象在函数y2=ax+b(a≠0)的图象的上方,
∴使y1>y2的x的取值范围是x>0,
故选:A.
本题主要考查了一次函数与一元一次不等式的关系,解答此题的关键是利用数形结合的思想方法求解。
5、C
【解析】
根据每人分3本,那么余8本,如果前面的每个学生分1本,那么最后一人就分不到3本,得出3x+8≥1(x-1),且1(x-1)+3>3x+8,分别求出即可.
【详解】
假设共有学生x人,根据题意得出:
1(x-1)+3>3x+8≥1(x-1),
解得:1<x≤6.1.
故选:C.
本题考查了不等式组的应用,解题关键是根据题意找出不等关系得出不等式组.
6、C
【解析】
先分别以点O、点A为圆心画圆,圆与x轴的交点就是满足条件的点P,再作OA的垂直平分线,与x轴的交点也是满足条件的点P,由此即可求得答案.
【详解】
如图,当OA=OP时,可得P1、P2满足条件,
当OA=AP时,可得P3满足条件,
当AP=OP时,可得P4满足条件,
故选C.
本题考查了等腰三角形的判定和坐标与图形的性质,正确的分类并画出图形是解题的关键.
7、D
【解析】
仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=100求解即可.
【详解】
解:观察图形得:
第1个图形有3+3×1=6个三角形,
第2个图形有3+3×2=9个三角形,
第3个图形有3+3×3=12个三角形,
…
第n个图形有3+3n=3(n+1)个三角形,
当n=2019时,3×(2019+1)=6060,
故选D.
本题考查了图形的变化类问题,解题的关键是仔细的读题并找到图形变化的规律,难度不大.
8、A
【解析】
连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.
【详解】
解:如图,连接AC与BD相交于O,
在▱ABCD中,OA=OC,OB=OD,
要使四边形AECF为平行四边形,只需证明得到OE=OF即可;
A、AF=EF无法证明得到OE=OF,故本选项正确.
B、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,则OB-BE=OD-DF,即OE=OF,故本选项错误;
C、若AF⊥CF,CE⊥AE,由直角三角形的性质可得OE=AC=OF,故本选项错误;
D、若BE=DF,则OB-BE=OD-DF,即OE=OF,故本选项错误;
故选:A.
本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、13.
【解析】
试题分析:∵CD沿CB平移7cm至EF
考点:平移的性质;等腰三角形的性质.
10、1
【解析】
根据极差的定义求解.
【详解】
解:数据:3,5,1,12,6,所以极差=12-3=1.
故答案为:1.
本题考查了极差的定义,它反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.
11、AC=BD或∠ABC=90°.
【解析】
矩形是特殊的平行四边形,矩形有而平行四边形不具有的性质是:矩形的对角线相等,矩形的四个内角是直角;可针对这些特点来添加条件.
【详解】
:若使ABCD变为矩形,可添加的条件是:
AC=BD;(对角线相等的平行四边形是矩形)
∠ABC=90°等.(有一个角是直角的平行四边形是矩形)
故答案为AC=BD或∠ABC=90°.
此题主要考查的是平行四边形的性质及矩形的判定方法,熟练掌握矩形和平行四边形的联系和区别是解答此题的关键.
12、1
【解析】
由30°角直角三角形的性质求得,然后根据矩形的两条对角线相等且平分来求的长度.
【详解】
解:在矩形中,对角线,的交点为,
,,.
又∵点为边的中点,
,
,,
,
,
.
故答案为:1.
本题主要考查对矩形的性质,三角形的中位线定理,能根据矩形的性质和30°角所对的直角边等于斜边的一半求出的长是解此题的关键.题型较好,难度适中.
13、≤;
【解析】
因为二次根式满足的条件是:含二次根号,被开方数大于或等于0,利用二次根式满足的条件进行求解.
【详解】
因为是二次根式,
所以,
所以,
故答案为.
本题主要考查二次根式的定义,解决本题的关键是要熟练掌握二次根式的定义.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】解:将此图形分成两个矩形,分别作出两个矩形的对角线的交点,,
则,分别为两矩形的对称中心,过点,的直线就是所求的直线,如图所示.
E
F
15、(1)九(1)班成绩的平均数为85,方差为70;九(2)班成绩的平均数为85,方差为160;(2)九(1)班方差小,成绩波动小
【解析】
(1)从直方图中得到各个选手的得分,由平均数和方差的公式计算;
(2)由方差的意义分析.
【详解】
(1)九(1)班的选手的得分分别为85,75,80,85,100,
∴九(1)班成绩的平均数=(85+75+80+85+100)÷5=85,
九(1)班的方差 =[(85−85) +(75−85) +(80−85) +(85−85) +(100−85) ]÷5=70;
九(2)班的选手的得分分别为70,100,100,75,80,
九(2)班成绩的平均数=(70+100+100+75+80)÷5=85,
九(2)班的方差 =[(70−85) +(100−85) +(100−85) +(75−85) +(80−85) ]÷5=160;
(2)平均数一样的情况下,九(1)班方差小,成绩波动小。
此题考查用样本估计总体,加权平均数,方差,条形统计图,解题关键在于看懂图中数据
16、(1)证明见解析;(1).
【解析】
(1)由题意得OA=OB,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA可证△AOE≌△BOF,可得AE=BF,可得BE+BF=AB,由勾股定理可得结论;
(1)由全等三角形的性质可得S△AOE=S△BOF,可得重叠部分的面积为正方形面积的,即可求解.
【详解】
解:(1)在正方形ABCD中,AO=BO,∠AOB=90°,∠OAB=∠OBC=45°.
∵∠AOE+∠EOB=90°,∠BOF+∠EOB=90°,∴∠AOE=∠BOF.
在△AOE和△BOF中
,
∴△AOE≌△BOF(ASA),
∴AE=BF,
∴BE+EF=BE+AE=AB
在Rt△AOB中,AB1=OA1+OB1,且OA=OB,
∴(BE+BF)1=1OB1,
(1)∵△AOE≌△BOF,
∴S△AOE=S△BOF,
∴重叠部分的面积=S△AOB=S正方形ABCD=a1.
故答案为:a1.
本题考查了正方形的性质和全等三角形的判定和性质,掌握全等三角形的判定是解题的关键.
17、(1的不动点为0和2;(2)①时,有唯一的不动点②时,有无数个不动点③时,没有不动点;(3)的取值范围是
【解析】
(1)根据不动点的性质即可列方程求解;
(2)令,得:,根据m,n的取值进行讨论即可求解;
(3)令,则,根据一元二次方程根与系数求出A,B的中点C的坐标,再根据点在直线上,得到,得到b关于a的二次函数,再根据二次函数的性质即可求解.
【详解】
解:(1)令,则,,.
所以,的不动点为0和2.
(2)令,得:.
①若,即时,有唯一的不动点;
②若,,即时,有无数个不动点;
③若,即时,没有不动点0.
(3)令,则.
设,,则,.
的中点坐标为
,.
所以,
点在直线上,
所以,.
.
当时,.
此时,恒大于0
所以,的取值范围是:.
此题主要考查二次函数的应用,解题的关键是根据题意理解不动点的定义与性质.
18、(1)见解析;(2)①,②见解析;③41.4或41.5.
【解析】
(1)AB=AD,BG=DF,则AG=AF,∠DAF+∠BAE=91°-∠EAF=45°=∠EAF,AF=AG,AE=AE,则△AFE≌△AGE(SAS),即可求解;
(2)①∵CE=BC-6=4,设DF=a,CF=11-a,EF=DF+BE=6+a,由勾股定理即可求解;②由①得:y2=y1+x,描点画图即可;
(3)利用分割法即可得出.
【详解】
(1)证明:如图①,延长EB至G,使,连接AG.
四边形ABCD是正方形,
,,
,
,
,
,
,,
,
,
,
,
,
,
,
.
(2)①在中,,
,
,
解这个方程,得.
②如图②所示.
③S△AEF=SABCD- S△ADF - S△ABE - S△EFC
=111---
=111-(DF+BE)11-
=111-EF11-
=111-5y2-(11-x)(11-y1)
=51-xy1
当x=4,y1=4.29时,S△AEF最小
S△AEF=51-×4×.29≈41.4或41.5.
图① 图②
本题为四边形综合题,涉及到三角形全等、函数作图,此类题目通常在作图的基础上,从图表查阅符合条件的数据点,进而求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、且
【解析】
分式的分母不等于零时分式有意义,且还需满足被开方数大于等于零的条件,根据要求列式计算即可.
【详解】
∵代数式有意义,
∴,且,
∴且,
故答案为:且.
此题考查分式有意义的条件,二次根式被开方数的取值范围的确定,正确理解题意列出不等式是解题的关键.
20、
【解析】
根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.
【详解】
解:∵PE⊥AB,PF⊥AC,∠BAC=90°,
∴∠EAF=∠AEP=∠AFP=90°,
∴四边形AEPF是矩形,
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交点就是M点,
∵当AP的值最小时,AM的值就最小,
∴当AP⊥BC时,AP的值最小,即AM的值最小.
∵AP×BC=AB×AC,
∴AP×BC=AB×AC,
在Rt△ABC中,由勾股定理,得BC==10,
∵AB=6,AC=8,
∴10AP=6×8,
∴AP=
∴AM=,
故答案为:.
考点:(1)、矩形的性质的运用;(2)、勾股定理的运用;(3)、三角形的面积公式
21、9或.
【解析】
分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.
【详解】
解:①如图1,延长EA交DC于点F,
∵菱形ABCD的周长为24,
∴AB=BC=6,
∵∠ABC=60°,
∴三角形ABC是等边三角形,
∴∠BAC=60°,
当EA⊥BA时,△ABE是等腰直角三角形,
∴AE=AB=AC=6,∠EAC=90°+60°=150°,
∴∠FAC=30°,
∵∠ACD=60°,
∴∠AFC=90°,
∴CF=AC=3,
则△ACE的面积为:AE×CF=×6×3=9;
②如图2,过点A作AF⊥EC于点F,
由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,
∵AB=BE=BC=6,
∴∠BEC=∠BCE=15°,
∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,
∴AF=AE,AF=CF=AC=,
∵AB=BE=6,
∴AE=,
∴EF=,
∴EC=EF+FC=
则△ACE的面积为:EC×AF=.
故答案为:9或.
本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.
22、
【解析】
过点F作AB的垂线,垂足为H,设DF=X,则,C=4,FC=,
,即DF=3,在直角三角形FHE中,
23、1.2
【解析】分析: 先由平均数的公式计算出a的值,再根据方差的公式计算即可.
详解: ∵数据10,9,a,12,9的平均数是10,
∴(10+9+a+12+9)÷5=10,
解得:a=10,
∴这组数据的方差是15[(10−10) ² +(9−10) ² +(10−10) ² +(12−10) ² +(9−10) ²]=1.2.
故选B.
点睛: 本题考查方差和平均数,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
二、解答题(本大题共3个小题,共30分)
24、(1)CD;平行;(2)见解析;(3)平行四边形的对边相等
【解析】
(1)CD;平行;
(2)证明:连接BD.
在△ABD和△CDB中,
∵AB=CD,AD=CB,BD=DB,
∴△ABD≌△CDB.
∴∠1=∠2,∠3=∠4,
∴AB//CD,AD//CB,
∴四边形ABCD是平行四边形.
(3)平行四边形的对边相等
考点:平行四边形的判定,全等三角形的判定
25、①菜地离小明家1.1千米,小明走到菜地用了15分钟;②小明给菜地浇水用了10分钟;③玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是0.08千米/分钟.
【解析】
①根据函数图象可以直接写出菜地离小明家多远,小明走到菜地用了多少时间;
②根据函数图象中的数据可以得到小明给菜地浇水用了多少时间;
③根据函数图象中的数据可以得到玉米地离菜地、小明家多远,小明从玉米地走回家平均速度是多少.
【详解】
①由图象可得,
菜地离小明家1.1千米,小明走到菜地用了15分钟;
②25-15=10(分钟),
即小明给菜地浇水用了10分钟;
③2-1.1=0.9(千米)
玉米地离菜地、小明家的距离分别为0.9千米,2千米,
小明从玉米地走回家平均速度是2÷(80-55)=0.08千米/分钟.
本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
26、(1),;(2).
【解析】
(1)把A点坐标代入反比例函数的解析式,即可求出反比例函数的解析式,再求出B点坐标,把A、B的坐标代入一次函数的解析式,得出方程组,求出方程组的解,即可得出一次函数的解析式;
(2)由面积的和差关系可求解.
【详解】
(1)∵点A(﹣3,2)在反比例函数y(x<0)的图象上,∴m=﹣3×2=﹣6,∴反比例函数解析式为:y.
∵点B(n,4)在反比例函数y(x<0)的图象,∴n,∴点B(,4).
∵点A,点B在一次函数y=kx+b的图象上,∴,解得:,∴一次函数解析式为:yx+6;
(2)设一次函数与x轴交于点D.在yx+6中,令y=0,解得:x=-4.1.
∵C(-1,0),∴CD=3.1,∴S△ABC = S△DBC-S△ADC==.
本题考查了一次函数和反比例函数的交点问题的应用,三角形的面积,用待定系数法求函数的图象,主要考查学生的计算能力,题目比较好,难度适中.
题号
一
二
三
四
五
总分
得分
批阅人
x
1
1
2
3
4
5
6
7
8
9
11
11
8.18
6.67
5.38
4.29
3.33
a
1.76
1.11
1.53
1
相关试卷
这是一份安徽省安庆市区二十三校2024-2025学年数学九上开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届安徽省合肥市、安庆市名校大联考九上数学开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届安徽省安庆宿松县联考数学九上开学达标检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。