安徽省定远县2025届数学九年级第一学期开学统考试题【含答案】
展开这是一份安徽省定远县2025届数学九年级第一学期开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数的自变量x的取值范围是( )
A.x≠0B.x≠1C.x≥1D.x≤1
2、(4分)下列各选项中因式分解正确的是( )
A.B.
C.D.
3、(4分)下列方程中,属于一元二次方程的是( )
A.B.C.D.
4、(4分)如图,矩形的对角线相交于点,,则的周长为()
A.12B.14C.16D.18
5、(4分)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为( )
A.2B.3 C.6D.
6、(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=2,则△ABF的周长为( )
A.4B.8C.6+D.6+2
7、(4分)已知x(x﹣2)=3,则代数式2x2﹣4x﹣7的值为( )
A.6B.﹣4C.13D.﹣1
8、(4分)用配方法解一元二次方程时,此方程配方后可化为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一辆汽车的行驶距离s(单位:m)与行驶时间t(单位:s)的函数关系式是s=9t+,则汽车行驶380m需要时间是______s.
10、(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=________.
11、(4分)化简________.
12、(4分)函数中,当满足__________时,它是一次函数.
13、(4分)已知一元二次方程:2x2+5x+1=0的两个根分别是x1、x2 , 则=________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形ABCD中,,,E、F分别是AB、CD的中点
求证:四边形AECF是平行四边形;
是否存在a的值使得四边形AECF为菱形,若存在求出a的值,若不存在说明理由;
如图,点P是线段AF上一动点且
求证:;
直接写出a的取值范围.
15、(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为 A(-3,0),与y轴交点为B,且与正比例函数的图象的交于点 C(m,4).
(1)求m的值及一次函数 y=kx+b的表达式;
(2)若点P是y轴上一点,且△BPC的面积为6,请直接写出点P的坐标.
16、(8分)先化简,再求值:,其中x是的整数部分.
17、(10分)用公式法解下列方程:
(1)2x2−4x−1=0;
(2)5x+2=3x2.
18、(10分)如图,在菱形中,.请根据下列条件,仅用无刻度的直尺过顶点作菱形的边上的高。
(1)在图1中,点为中点;
(2)在图2中,点为中点.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一个有进水管和出水管的容器,从某时刻开始4 min内只进水不出水,在随后的8 min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为________________
20、(4分)一组数据2,3,4,5,3的众数为__________.
21、(4分)不等式组的解集是_________.
22、(4分)计算=________________.
23、(4分)小丽计算数据方差时,使用公式S2=,则公式中=__.
二、解答题(本大题共3个小题,共30分)
24、(8分)某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.
(1)甲种服装进价为 元/件,乙种服装进价为 元/件;
(2)若购进这100件服装的费用不得超过7500元.
①求甲种服装最多购进多少件?
②该服装店对甲种服装每件降价元,乙种服装价格不变,如果这100件服装都可售完,那么该服装店如何进货才能获得最大利润?
25、(10分)(1)因式分解:
(2)解方程:
26、(12分)如图,在△ABC中,∠ACB=90°,AC=30cm,BC=40cm.点P从点A出发,以5cm/s的速度沿AC向终点C匀速移动.过点P作PQ⊥AB,垂足为点Q,以PQ为边作正方形PQMN,点M在AB边上,连接CN.设点P移动的时间为t(s).
(1)PQ=______;(用含t的代数式表示)
(2)当点N分别满足下列条件时,求出相应的t的值;①点C,N,M在同一条直线上;②点N落在BC边上;
(3)当△PCN为等腰三角形时,求t的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据题意若函数y=有意义,可得x-1≠0;
解得x≠1;故选B
2、D
【解析】
直接利用公式法以及提取公因式法分解因式进而判断即可.
【详解】
解:A.,故此选项错误;
B.,故此选项错误;
C.,故此选项错误;
D.,正确.
故选D.
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
3、B
【解析】
利用一元二次方程的定义对选项进行判断即可.
【详解】
解:A、2x﹣1=3x是一元一次方程,不符合题意;
B、x2=4是一元二次方程,符合题意;
C、x2+3y+1=0是二元二次方程,不符合题意;
D、x3+1=x是一元三次方程,不符合题意,
故选:B.
此题考查一元二次方程的定义,熟练掌握方程的定义是解本题的关键.
4、A
【解析】
根据题意可得三角形ABO是等边三角形,利用性质即可解答.
【详解】
解:已知在矩形ABCD中,AO=BO,
又因为∠BOC=120°,故∠AOB=60°,
可得三角形AOB为等边三角形,
又因为AC=8,则AB=4,
则三角形AOB的周长为12.
答案选A.
本题考查矩形和等边三角形的性质,熟悉掌握是解题关键.
5、B
【解析】
根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF是菱形,所以BE,AE可求出进而可求出BC的长.
【详解】
∵四边形ABCD是矩形,
∴∠A=90°,
即BA⊥BF,
∵四边形BEDF是菱形,
∴EF⊥BD,∠EBO=∠DBF,
∵EF=AE+FC,AE=CF,EO=FO
∴AE=EO=CF=FO,
∴AB=BO=3,∠ABE=∠EBO,
∴∠ABE=∠EBD=∠DBC=30°,
∴BE=,
∴BF=BE=2,
∴CF=AE=,
∴BC=BF+CF=3,
故选B.
6、D
【解析】
先利用直角三角形斜边中线性质求出AB,再利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.
【详解】
∵AF⊥BC,点D是边AB的中点,
∴AB=2DF=4,
∵点D,E分别是边AB,AC的中点,
∴DE∥BC,
∴∠B=∠ADE=30°,
∴AF=AB=2,
由勾股定理得,BF=,
则△ABF的周长=AB+AF+BF=4+2+2=6+2,
故选:D.
此题考查三角形中位线定理,含30度角的直角三角形,直角三角形斜边上的中线,解题关键在于利用30角所对的直角边等于斜边的一半求解.
7、D
【解析】
将x(x﹣2)=3代入原式=2x(x﹣2)﹣7,计算即可得到结论.
【详解】
当x(x﹣2)=3时,原式=2x(x﹣2)﹣7=2×3﹣7=6﹣7=﹣1.
故选D.
本题考查了代数式求值,解题的关键是掌握整体代入思想的运用.
8、A
【解析】
【分析】按照配方法的步骤进行求解即可得答案.
【详解】2x2-6x+1=0,
2x2-6x=-1,
x2-3x=,
x2-3x+=+
(x-)2=,
故选A.
【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20
【解析】
令S=380m,即可求出t的值.
【详解】
解:当s=380m时,9t+t2=380,
整理得t2+18t﹣760=0,
即(t﹣20)(t+38)=0,
解得t1=20,t2=﹣38(舍去).
∴行驶380米需要20秒,
故答案为:20
本题主要考查根据函数值求自变量的值,能够利用方程的思想是解题的关键.
10、.
【解析】
直接利用菱形的性质得出BO=3,CO=4,AC⊥BD,进而利用勾股定理以及直角三角形面积求法得出答案.
【详解】
∵四边形ABCD为菱形,
∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,
在Rt△OBC中,∵OB=3,OC=4,
∴BC=,
∵OE⊥BC,
∴OE•BC=OB•OC,
∴OE=.
11、
【解析】
根据二次根式有意义 条件求解即可.
【详解】
根据题意知:2-a≥0,a-2≥0,
解得,a=2,
∴3×2+0+0=6.
故答案为:6.
此题主要考查了二次根式有意义的条件的应用,注意二次根式有意义的条件是被开方数是非负数.
12、k≠﹣1
【解析】
分析: 根据一次函数的定义解答即可,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数.
详解:由题意得,
k+1≠0,
∴k ≠-1.
故答案为k ≠-1.
点睛: 本题考查了一次函数的定义,熟练掌握一次函数的定义是解答本题的关键.
13、
【解析】
依据一元二次方程根与系数的关系:x1+x2=-,x1·x2=,即可求出.
【详解】
因为2x2+5x+1=0,所有a=2、b=5、c=1,所以x1+x2=-,x1·x2=,有因为=x1x2(x1+x2),所以=-×=
本题考查一元二次方程根与系数之间的关系,熟练掌握相关知识是解的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)不存在;(3)①证明见解析;②.
【解析】
(1)由矩形性质得,,再证且即可;(2)不存在,由知:当时,四边形AECF为菱形,可得,此方程无解;(3)由平行线性质得,证得,,由,,得OE是三角形的中位线,所以,根据中垂线性质得;如图当P与F重合时,,的取值范围是.
【详解】
证明:四边形ABCD是矩形,
,,
又、F分别是边AB、CD的中点,
,
四边形AECF是平行四边形;
解:不存在,
由知:四边形AECF是平行四边形;
当时,四边形AECF为菱形,
四边形ABCD是矩形,
,
,
,
方程无解,故不存在这样的a;
解:如图,
四边形AECF是平行四边形,
,
,
,
,
,,
,
,
;
如图,当P与F重合时,,
的取值范围是.
本题考核知识点:矩形性质,菱形判定,三角形中位线.解题关键点:综合运用矩形性质和菱形判定和三角形中位线性质.
15、(1)m的值为3,一次函数的表达式为
(2) 点P的坐标为(0, 6)、(0,-2)
【解析】
(1)首先利用待定系数法把C(m,4)代入正比例函数y=x中,计算出m的值,进而得到C点坐标,再利用待定系数法A、C两点坐标代入一次函数y=kx+b中,计算出k、b的值进而得到一次函数解析式.
(2)利用△BPC的面积为6,即可得出点P的坐标.
解:(1)∵点C(m,4)在正比例函数的图象上,
∴·m,即点C坐标为(3,4)
∵一次函数经过A(-3,0)、点C(3,4)
∴解得:
∴一次函数的表达式为
(2)点P的坐标为(0, 6)、(0,-2)
“点睛”此题主要考查了待定系数法求一次函数解析式知识,根据待定系数法把A、C两点坐标代入函数y=kx+b中,计算出k、b的值是解题关键.
16、,
【解析】
原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x的值代入计算即可求出值.
【详解】
解:原式=
∵x是的整数部分,∴x=2.
当x=2时, .
本题考查分式的化简求值,熟练掌握运算法则是解题关键.
17、 (1) x1=,x2=;(2) x1=2,x2=−.
【解析】
把原方程化为一元二次方程的一般形式,根据求根公式x=求解即可.
【详解】
(1)∵△=16+8=24>0,
∴x==,
x1=,x2=;
(2)先整理得到3x2−5x−2=0,∵△=25+24=49>0,∴x=,x1=2,x2=−.
本题考查解一元二次方程-公式法,解题的关键是掌握解一元二次方程-公式法.
18、(1)见解析;(2)见解析.
【解析】
(1)在菱形中,,可知△ACD是等边三角形,过顶点作菱形的边上的高,即找到AD的边中点即可.根据菱形是中心对称图形,连接AC、BD得到对称中心O,再作直线交于,连接,即可.
(2)在菱形中,,可知△ACD是等边三角形,过顶点作菱形的边上的高,即找到AD的边中点即可.根据菱形是轴对称图形,连接,交于点,作直线交于,线段即为所求.
【详解】
解:(1)如图1中,连接,交于点,作直线交于,连接,线段即为所求.
(2)如图2中,连接,交于点,作直线交于,线段即为所求.
本题考查菱形的性质,三角形的高的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、L
【解析】
由前4分钟的进水量求得每分钟的进水量,后8分钟的进水量求得每分钟的出水量.
【详解】
前4分钟的每分钟的进水量为20÷4=5,
每分钟的出水量为5-(30-20)÷8=.
故答案为L.
从图象中获取信息,首先要明确两坐标轴的实际意义,抓住交点,起点,终点等关键点,明确函数图象的变化趋势,变化快慢的实际意义.
20、1.
【解析】
众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.
【详解】
本题中数据1出现了2次,出现的次数最多,所以本题的众数是1.
故答案为1.
众数是指一组数据中出现次数最多的数据.
21、x>1
【解析】
求出每个不等式的解集,根据找不等式组解集的规律找出即可.
【详解】
∵解不等式x-1≥0得:x≥1,
解不等式4-1x<0得:x>1,
∴不等式组的解集为x>1,
故答案是:x>1.
考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.
22、
【解析】
直接利用二次根式的乘法运算法则计算得出答案.
【详解】
原式=,
故答案为:.
本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.
23、1
【解析】
分析:根据题目中的式子,可以得到的值,从而可以解答本题.
详解:∵S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],∴=1.
故答案为1.
点睛:本题考查了方差、平均数,解答本题的关键是明确题意,求出相应的平均数.
二、解答题(本大题共3个小题,共30分)
24、(1)80;60;(2)①甲种服装最多购进75件;②当时,购进甲种服装75件,乙种服装25件;当时,所有进货方案获利相同;当时,购进甲种服装65件,乙种服装35件.
【解析】
(1)设乙服装的进价y元/件,则甲种服装进价为(y+20)元/件,根据题意列方程即可解答;
(2)①设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式组解答即可;
②首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.
【详解】
(1)设乙服装的进价y元/件,则甲种服装进价为元/件,根据题意得:
,
解得,
即甲种服装进价为80元/件,乙种服装进价为60元/件;
故答案为80;60;
(2)①设计划购买件甲种服装,则购买件乙种服装,根据题意得
,解得,
甲种服装最多购进75件;
②设总利润为元,购进甲种服装件.
则,且,
当时,,随的增大而增大,故当时,有最大值,即购进甲种服装75件,乙种服装25件;
当时,所有进货方案获利相同;
当时,,随的增大而减少,故当时,有最大值,即购进甲种服装65件,乙种服装35件.
本题考查了分式方程的应用,一次函数的应用,依据题意列出方程是解题的关键.
25、(1),(2)
【解析】
(1)先提公因式,再利用平方差公式即可,(2)移项,利用因式分解的方法求解即可.
【详解】
解:(1)
(2)因为:
所以:
所以:
所以:或
所以:.
本题考查因式分解与一元二次方程的解法,熟练掌握因式分解,一元二次方程的解法并选择合适的方法解题是关键.
26、(1)4t;(2)①,②;(3)秒或秒或秒.
【解析】
(1)先求出AB=50,sinA==,csA==,进而求出AQ=3t,PQ=4t,即可得出结论;
(2)先判断出PN=QM=PQ=4t,
①求出CD=24,AD=18,进而判断出AQ+QM=AD=18,建立方程即可得出结论;
②判断出∠APQ=∠PNC,进而得出△AQP∽△PCN,建立方程即可得出结论;
(3)分三种情况,利用等腰三角形的性质建立方程求解即可得出结论.
【详解】
解:(1)在Rt△ABC中,根据勾股定理得,AB=50,
∴sinA==,csA==
∵PQ⊥AB,
∴∠AQP=90°,
由运动知,AP=5t,
在Rt△AQP中,AQ=AP•csA=×5=3t,PQ=AP•sinA=4t,
故答案为:4t;
(2)由(1)知,AQ=3t,PQ=4t,
∵四边形PQMN是正方形,
∴PN=QM=PQ=4t,
①如图1,
由(1)知,AB=50,
过点C作CD⊥AB于D,
∴AB•CD=AC•BC,
∴CD=24,
在Rt△ADQ中,AD==18,
∵点C,N,M在同一条直线上,
∴点M落在点D,
∴AQ+QM=AD=18,
由(1)知,QM=PQ=4t,AQ=3t,
∴4t+3t=18,
∴t=;
②点N落在BC上时,∠PCN=∠PCB=90°=∠AQP,
∴∠CPN+∠CNP=90°,
∵∠QPN=90°
∴∠CPN+∠APQ=90°,
∴∠APQ=∠PNC,
∵∠AQP=∠PCN,
∴△AQP∽△PCN,
∴,
∴,
∴t=;
(3)当PC=PN时,30-5t=4t,
∴t=,
当PC=NC时,如图2,过点C作CF⊥PN于F,延长CF交AB于D,
∴PF=PN=2t,
∴QD=2t,
根据勾股定理得,AQ==3t,
∴AD=AQ+QD=5t=18,
∴t=,
当PN=NC时,如图3,过点N作NG⊥AC于G,
∴PG=PC=,
易知,△PNG∽△APQ,
∴,
∴,
∴t=,
即:当△PCN是等腰三角形时,秒或秒或秒.
此题是四边形综合题,主要考查了正方形的性质,相似三角形的性质和判定,勾股定理,锐角三角函数,用方程的思想解决问题是解本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份安徽省定远县七里塘中学2024年数学九年级第一学期开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省安庆市怀宁县2025届数学九年级第一学期开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届安徽省合肥市九年级数学第一学期开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。