终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    安徽省阜阳地区2025届数学九年级第一学期开学学业水平测试试题【含答案】

    立即下载
    加入资料篮
    安徽省阜阳地区2025届数学九年级第一学期开学学业水平测试试题【含答案】第1页
    安徽省阜阳地区2025届数学九年级第一学期开学学业水平测试试题【含答案】第2页
    安徽省阜阳地区2025届数学九年级第一学期开学学业水平测试试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省阜阳地区2025届数学九年级第一学期开学学业水平测试试题【含答案】

    展开

    这是一份安徽省阜阳地区2025届数学九年级第一学期开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果,那么代数式的值为( )
    A.B.C.D.
    2、(4分)关于的一元二次方程,下列说法错误的是( )
    A.方程无实数解
    B.方程有一个实数解
    C.有两个相等的实数解
    D.方程有两个不相等的实数解
    3、(4分)如图:由火柴棒拼出的一列图形,第个图形是由个等边三角形拼成的,通过观察,分析发现:第8个图形中平行四边形的个数( ).

    A.16B.18C.20D.22
    4、(4分)已知点(,)在第二象限,则的取值范围是( )
    A.B.
    C.D.
    5、(4分)如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是( )
    A.∠ABD=∠CB.∠ADB=∠ABCC.D.
    6、(4分)一次函数y=6x+1的图象不经过( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    7、(4分)计算=( )
    A.B.C.D.
    8、(4分)点、均在由边长为1的正方形组成的网格的格点上,建立平面直角坐标系如图所示。若是轴上使得的值最大的点,是轴上使得的值最小的点,则( )
    A.4B.6.3C.6.4D.5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)分解因式:﹣2x2y+16xy﹣32y= .
    10、(4分)某工厂原计划在规定时间内生产12000个零件,实际每天比原计划多生产100个零件,结果比规定时间节省了.若设原计划每天生产x个零件,则根据题意可列方程为_____.
    11、(4分)已知,四边形ABCD中,AB∥CD,AB=8,DC=4,点M、N分别为边AB、DC的中点,点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,到达点A后立即原路返回,点P到达点C后点Q同时停止运动,设点P、Q运动的时问为t秒,当以点M、N、P、Q为顶点的四边形为平行四边形时,t的值为________。
    12、(4分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离与慢车行驶的时间之间的函数关系如图所示,则快车的速度为__________.
    13、(4分)如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).
    三、解答题(本大题共5个小题,共48分)
    14、(12分)甲、乙两人相约登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
    (1)图中的t1= 分;
    (2)若乙提速后,乙登山的速度是甲登山的速度的3倍,
    ①则甲登山的速度是 米/分,图中的t2= 分;
    ②请求出乙登山过程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.
    15、(8分)在直角坐标平面里,梯形ABCD各顶点的位置如图所示,图中每个小正方形方格的边长为1个单位长度.
    (1)求梯形ABCD的面积;
    (2)如果把梯形ABCD在坐标平面里先向右平移1个单位,然后向下平移2个单位得到梯形A1B1C1D1,求新顶点A1,B1,C1,D1的坐标.
    16、(8分)一次函数(a为常数,且).
    (1)若点在一次函数的图象上,求a的值;
    (2)当时,函数有最大值2,请求出a的值.
    17、(10分)如图,菱形对角线交于点,,,与交于点.
    (1)试判断四边形的形状,并说明你的理由;
    (2)若,求的长.
    18、(10分)如图,直线l1经过过点P(1,2),分别交x轴、y轴于点A(2,0),B.
    (1)求B点坐标;
    (2)点C为x轴负半轴上一点,过点C的直线l2:交线段AB于点D.
    ①如图1,当点D恰与点P重合时,点Q(t,0)为x轴上一动点,过点Q作QM⊥x轴,分别交直线l1、l2于点M、N.若,MN=2MQ,求t的值;
    ②如图2,若BC=CD,试判断m,n之间的数量关系并说明理由.

    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若点A(2,a)关于x轴的对称点是B(b,-3)则ab的值是 .
    20、(4分)计算:=___________
    21、(4分)在菱形ABCD中,E为AB的中点,OE=3,则菱形ABCD的周长为.
    22、(4分)一次函数y=kx+b(k≠0,k,b为常数)的图象如图所示,则关于x的不等式kx+b<0的解集为______.
    23、(4分)如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,直线l1:y=x-4分别与x轴,y轴交于A,B两点,与直线l2交于点C(-2,m).点D是直线l2与y轴的交点,将点A向上平移3个单位,再向左平移8个单位恰好能与点D重合.
    (1)求直线l2的解析式;
    (2)已知点E(n,-2)是直线l1上一点,将直线l2沿x轴向右平移.在平移过程中,当直线l2与线段BE有交点时,求平移距离d的取值范围.
    25、(10分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.
    (1)求每台电冰箱与空调的进价分别是多少?
    (2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?
    26、(12分)闵行区政府为残疾人办实事,在道路改造工程中为盲人修建一条长3000米的盲道,根据规划设计和要求,某工程队在实际施工中增加了施工人员,每天修建的盲道比原计划多250米,结果提前2天完成工程,问实际每天修建盲道多少米.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    先把分母因式分解,再约分得到原式=,然后把x=3y代入计算即可.
    【详解】
    原式=•(x-y)=,
    ∵x-3y=0,
    ∴x=3y,
    ∴原式==.
    故选:D.
    本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
    2、B
    【解析】
    将各选项的k带入方程验证,即可得到答案.
    【详解】
    解:A,当k=2017,k-2019==-2,该方程无实数解,故正确;
    B, 当k=2018,k-2019==-1,该方程无实数解,故错误;
    C,当k=2019,k-2019==0,解得x=1,故正确;
    D, 当k=2020,k-2019=2020-2019=1,解得x=0或x=2,故正确;
    因此答案为B.
    本题主要考查二元一次方程的特点,把k值代入方程验证是解答本题的关键.
    3、C
    【解析】
    根据图形易得:n=1时有1=12个平行四边形;n=2时有2=1×2个平行四边形;n=3时有4=22个平行四边形;n=4时有6=2×3个平行四边形;由此可知应分n的奇偶,得出答案.
    【详解】
    解:∵n=1时有1=12个平行四边形;
    n=2时有2=1×2个平行四边形;
    n=3时有4=22个平行四边形;
    n=4时有6=2×3个平行四边形;

    ∴当为第2k-1(k为正整数)个图形时,有k2个平行四边形,
    当第2k(k为正整数)个图形时,有k(k+1)个平行四边形,
    第8个图形中平行四边形的个数为即当k=4时代入得4×5=20个,
    故选C.
    本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
    4、B
    【解析】
    根据象限的定义以及性质求出的取值范围即可.
    【详解】
    ∵点(,)在第二象限

    解得
    故答案为:B.
    本题考查了象限的问题,掌握象限的定义以及性质是解题的关键.
    5、C
    【解析】
    由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
    【详解】
    ∵∠A是公共角,
    ∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;
    当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;
    AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,
    故选C.
    6、D
    【解析】
    试题分析:先判断出一次函数y=6x+1中k的符号,再根据一次函数的性质进行解答即可.
    解:∵一次函数y=6x+1中k=6>0,b=1>0,
    ∴此函数经过一、二、三象限,
    故选D.
    7、A
    【解析】
    直接利用二次根式的性质化简得出答案.
    【详解】
    解:原式==.
    故选:A.
    此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.
    8、C
    【解析】
    首先连接AB并延长,交x轴于点P,此时的值最大,可得出OP=4,作点A关于y轴的对称点A′,连接A′B交y轴于点Q,此时的值最小,首先求出直线A′B的解析式,得出,即可得出OQ,进而得解.
    【详解】
    连接AB并延长,交x轴于点P,此时的值最大;
    易求OP=4;
    如图,作点A关于y轴的对称点A′,连接A′B交y轴于点Q,此时的值最小,
    直线A′B:,



    故答案为C.
    此题主要考查轴对称的最值问题,关键是作辅助线,找出等量关系.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、﹣2y(x﹣4)2
    【解析】
    试题分析:根据提取公因式以及完全平方公式即可求出:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2
    故答案为﹣2y(x﹣4)2
    考点:因式分解
    10、-
    【解析】
    设原计划每天生产x个零件,则根据时间差关系可列出方程.
    【详解】
    设原计划每天生产x个零件,根据结果比规定时间节省了.
    可得 -
    故答案为: -
    理解工作问题,从时间关系列出方程.
    11、1或1.5或3.5
    【解析】
    利用线段中点的定义求出DN,BM的长,再根据两点的运动速度及运动方向,分情况讨论:当0<t≤2时,PN=2-t,MQ=4-3t或MQ=3t-4;当2<t≤4时PN=t-2,MQ=12-3t,然后根据平行四边形的判定定理,由题意可知当PN=MQ,以点M、N、P、Q为顶点的四边形为平行四边形,分别建立关于t的方程,分别求解即可
    【详解】
    解:∵点M、N分别为边AB、DC的中点,
    ∴DN=DC= ×4=2,
    BM=AB=×8=4;
    ∵点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,点P到达点C后点Q同时停止运动,
    ∴DP=t,BQ=3t,
    当0<t≤2时,PN=2-t,MQ=4-3t或MQ=3t-4
    当2<t≤4时PN=t-2,MQ=12-3t
    ∵ AB∥CD
    ∴PN∥MQ;
    ∴当PN=MQ,以点M、N、P、Q为顶点的四边形为平行四边形,
    ∴2-t=4-3t,或2-t=3t-4,或t-2=12-3t,
    解之:t=1或t=1.5或t=3.5.
    故答案为:t=1或1.5或3.5.
    本题考查平行四边形的判定和性质,一元一次方程等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
    12、150km/h
    【解析】
    假设快车的速度为a(km/h),慢车的速度为b(km/h).当两车相遇时,两车各自所走的路程之和就是甲乙两地的距离,由此列式4a+4b=900①,另外,由于快车到达乙地的时间比慢车到达甲地的时间要短,图中的(12,900)这个点表示慢车刚到达甲地,这时的两车距离等于两地距离,而x=12就是慢车正好到达甲地的时间,所以,12b=900②,①和②可以求出快车的速度.
    【详解】
    解:设快车的速度为a(km/h),慢车的速度为b(km/h),
    ∴4(a+b)=900,
    ∵慢车到达甲地的时间为12小时,
    ∴12b=900,
    b=75,
    ∴4(a+75)=900,
    解得:a=150;
    ∴快车的速度为150km/h.
    故答案为:150km/h.
    此题主要考查了一次函数的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系得出b的值.
    13、AB=AD(答案不唯一).
    【解析】
    已知OA=OC,OB=OD,可得四边形ABCD是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD或BC=CD或AC⊥BD,本题答案不唯一,符合条件即可.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)2;(2)①10,20;②.
    【解析】
    (1)根据高度=速度×时间即可算出t1的值;
    (2)①根据“高度=速度×时间”列式计算即可;②运用待定系数法求出线段OA与线段AB的解析式即可.
    【详解】
    (1)t1=30÷15=2
    故答案为:2;
    (2)①甲登山上升的速度是:(300-100)÷20=10(米/分钟),
    故答案为:10,20;t2=(300-100)÷10=20,
    ②当0≤x≤2时,直线过原点,且经过点(2,30),
    ∴y=15x,
    当2<x≤11时,设y=kx+b,直线过点(2,30),(11,300)
    得,
    y与x的数解析式也可以合起来表示为:

    本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式.
    15、(1)12;(2)A1(﹣2,﹣3),B1(3,﹣3),C1(3,0),D1(0,0)
    【解析】
    试题分析:(1)判断出A、B、C、D四点坐标,利用梯形的面积公式计算即可;
    (2)则平移公式为:,即可解决问题;
    试题解析:
    (1)由图可知:
    A(﹣3,﹣1)、B(2,﹣1)、C(2,2)、D(﹣1,2)
    AB∥CD,BC⊥AB,
    所以,梯形ABCD是直角梯形,
    AB=5,DC=3,BC=3,
    梯形ABCD的面积是S=
    (2)如果把梯形ABCD在坐标平面里先向右平移1个单位,然后向下平移2个单位,则平移公式为:
    所以,平移以后所得梯形A1B1C1D1各顶点的坐标分别为:
    A1(﹣2,﹣3),B1(3,﹣3),C1(3,0),D1(0,0)
    A1(-2,-3),B1(3,-3),C1(3,0),D1(0,0)
    【点睛】考查梯形的面积公式.、坐标与图形的性质、平移变换等知识,解题的关键是熟练掌握坐标与图形的性质,正确写出点的坐标是解决问题的关键.
    16、(1);(2)或.
    【解析】
    (1))把代入即可求出a;
    (2)分①时和②时根据函数值进行求解.
    【详解】
    解:(1)把代入得,解得;
    (2)①时,y随x的增大而增大,
    则当时,y有最大值2,把,代入函数关系式得,解得;
    ②时,y随x的增大而减小,
    则当时,y有最大值2,把代入函数关系式得,解得,所以或.
    此题主要考查一次函数的图像,解题的关键是根据题意分情况讨论.
    17、(1)四边形是矩形,理由见解析;(2).
    【解析】
    (1)由菱形的性质可证明∠BOA=90°,然后再证明四边形AEBO为平行四边形,从而可证明四边形AEBO是矩形;
    (2)依据矩形的性质可得到OE=AB,然后依据菱形的性质可得到AB=CD,即可求出的长.
    【详解】
    解:(1)四边形是矩形
    理由如下:∵,,
    ∴四边形是平行四边形
    又∵菱形对角线交于点,∴,即
    ∴四边形是矩形
    (2)∵四边形是矩形,

    在菱形中,
    ∴.
    本题主要考查的是菱形的性质判定、矩形的性质和判定,求出四边形是矩形是解题的关键.
    18、 (1) ;(2)①,;②
    【解析】
    【分析】(1)用待定系数法求解;(2)点Q的位置有两种情况:当点Q在点A左侧,点P的右侧时;当点Q在点P的右侧时,.都有,再根据MN=2MQ,可求t的值;(3)由BC=CD,证△BCO≌△CDE,设C(a,0),D(4+a,-a),并代入解析式,通过解方程组可得.
    【详解】解:(1)设直线l1的解析式为y=kx+b,
    直线经过点P(2,2),A(4,0),
    即, 解得,
    直线l1的解析式为y=-x+4;
    (2)①∵直线l2过点P(2,2)且,
    即直线l2:,
    点Q(t,0),M(t,4-t),N(t,),
    1. 当点Q在点A左侧,点P的右侧时,
    ,,
    即,解得;
    ⒉ 当点Q在点A右侧时
    ,MQ=t-4,
    即,解得t=10,
    ②过点D作DE⊥AC于E ,
    ∵BC=CD,BO=OA,
    ∠DBC=∠1+∠ABO=∠BDC=∠2+∠DAE,
    ∴∠1=∠2,
    ∴△BCO≌△CDE,
    ∴OC=ED,BO=CE,
    设C(a,0),D(4+a,-a),
    则,
    解得,

    【点睛】本题考核知识点:一次函数综合应用. 本题先用待定系数法求解析式,比较容易;后面要根据数形结合,结合线段的和差关系,情况讨论,比较综合;最后一小题要先证明三角形全等,得到线段的关系,再根据这个关系列出方程组,化简得到答案,这也比较难.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出ab.
    解答:解:∵点A(2,a)关于x轴的对称点是B(b,-3),
    ∴a=3,b=2,
    ∴ab=1.
    故答案为1.
    20、6
    【解析】
    先取绝对值符号、计算负整数指数幂和零指数幂,再计算加减可得;
    【详解】
    解:原式=1+1+4=6
    故答案为:6
    此题主要考查了实数运算,绝对值,负整数指数幂和零指数幂,正确化简各数是解题关键.
    21、1.
    【解析】
    试题分析:根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线等于第三边的一半求出AD,然后根据菱形的周长进行计算即可得解.
    解:在菱形ABCD中,OB=OD,
    ∵E为AB的中点,
    ∴OE是△ABD的中位线,
    ∵OE=3,
    ∴AD=2OE=2×3=6,
    ∴菱形ABCD的周长为4×6=1.
    故答案为1.
    考点:菱形的性质.
    22、x>1
    【解析】
    从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b<0的解集.
    【详解】
    解:函数y=kx+b的图象经过点(1,0),并且函数值y随x的增大而减小,
    所以当x>1时,函数值小于0,即关于x的不等式kx+b<0的解集是x>1.
    故答案为x>1.
    此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    23、
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出A1B1=AC,B1C1=AB,A1C1=BC,从而得到△A1B1C1是△ABC周长的一半,依此类推,下一个三角形是上一个三角形的周长的一半,根据此规律求解即可.
    【详解】
    ∵△ABC的三条中位线组成△A1B1C1,
    ∴A1B1=AC,B1C1=AB,A1C1=BC,
    ∴△A1B1C1的周长=△ABC的周长=×3=,
    依此类推,△A2B2C2的周长=△A1B1C1的周长=×=,
    则△A5B5C5的周长为=,
    故答案为.
    本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,求出后一个三角形的周长等于前一个三角形的周长的一半是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)直线l2的解析式为y=4x+3;(2)≤d≤.
    【解析】
    (1)根据平移的方向和距离即可得到A(8,0),D(0,3),再根据待定系数法即可得到直线l2的解析式;
    (2)根据一次函数图象上点的坐标特征,即可得到E(4,-2),再根据y=x-4中,令x=0,则y=-4,可得B(0,-4),依据直线l2与线段BE有交点,即可得到平移距离d的取值范围.
    【详解】
    (1)∵将点A向上平移3个单位,再向左平移8个单位恰好能与点D重合,
    ∴点A离y轴8个单位,点D离x轴3个单位,
    ∴A(8,0),D(0,3),
    把点C(-2,m)代入l1:y=x-4,可得
    m=-1-4=-5,
    ∴C(-2,-5),
    设直线l2的解析式为y=kx+b,
    把D(0,3),C(-2,-5),代入可得
    ,解得,
    ∴直线l2的解析式为y=4x+3;
    (2)把E(n,-2)代入直线l1:y=x-4,可得
    -2=n-4,
    解得n=4,
    ∴E(4,-2),
    在y=x-4中,令x=0,则y=-4,
    ∴B(0,-4),
    设直线l2沿x轴向右平移后的解析式为y=4(x-n)+3,
    当平移后的直线经过点B(0,-4)时,-4=4(0-n)+3,
    解得n=;
    当平移后的直线经过点E(4,-2)时,-2=4(4-n)+3,
    解得n=.
    ∵直线l2与线段BE有交点,
    ∴平移距离d的取值范围为:≤d≤.
    本题主要考查了一次函数图象与几何变换,解题时注意:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.
    25、(1)每台电冰箱的进价2000元,每台空调的进价1600元.
    (2)此时应购进电冰箱33台,则购进空调67台.
    【解析】
    试题分析:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元,根据:“用8000元购进电冰箱的数量与用6400元购进空调的数量相等”列分式方程求解可得;
    (2)设购进电冰箱x台,则购进空调(100﹣x)台,根据:总利润=冰箱每台利润×冰箱数量+空调每台利润×空调数量,列出函数解析式,结合x的范围和一次函数的性质可知最值情况.
    解:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元
    依题意得,,
    解得:m=2000,
    经检验,m=2000是原分式方程的解,
    ∴m=2000;
    ∴每台电冰箱的进价2000元,每台空调的进价1600元.
    (2)设购进电冰箱x台,则购进空调(100﹣x)台,
    根据题意得,总利润W=100x+150(100﹣x)=﹣50x+15000,
    ∵﹣50<0,
    ∴W随x的增大而减小,
    ∵33≤x≤40,
    ∴当x=33时,W有最大值,
    即此时应购进电冰箱33台,则购进空调67台.
    26、750米.
    【解析】
    设实际每天修建盲道x米,则原计划每天修建盲道(x﹣25)米,根据题意可得,实际比原计划少用2天完成任务,据此列方程求解.
    解:设实际每天修建盲道x米,则原计划每天修建盲道(x﹣25)米,
    由题意得,﹣=2,
    解得:x=750,
    经检验,x=750是原分式方程的解,且符合题意.
    答:实际每天修建盲道750米.
    “点睛”本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.
    题号





    总分
    得分
    批阅人

    相关试卷

    2025届安徽省六安市名校数学九年级第一学期开学学业水平测试试题【含答案】:

    这是一份2025届安徽省六安市名校数学九年级第一学期开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2025届安徽省蚌埠市名校数学九年级第一学期开学学业水平测试试题【含答案】:

    这是一份2025届安徽省蚌埠市名校数学九年级第一学期开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山西省朔州地区数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024年山西省朔州地区数学九年级第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map