安徽省阜阳市临泉县2024年九上数学开学学业质量监测试题【含答案】
展开这是一份安徽省阜阳市临泉县2024年九上数学开学学业质量监测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列事件中,属于不确定事件的是( )
A.科学实验,前100次实验都失败了,第101次实验会成功
B.投掷一枚骰子,朝上面出现的点数是7点
C.太阳从西边升起来了
D.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形
2、(4分)如图,一次图数y=﹣x+3与一次函数y=2x+m图象交于点(2,n),则关于x的不等式组的解集为( )
A.x>﹣2B.x<3C.﹣2<x<3D.0<x<3
3、(4分)如图,A,B,C是⊙O上三点,∠α=140°,那么∠A等于( ).
A.70°B.110°C.140°D.220°
4、(4分)熊大、熊二发现光头强在距离它们300米处伐木,熊二便匀速跑过去阻止,2分钟后熊大以熊二1.2倍的速度跑过去,结果它们同时到达,如果设熊二的速度为x米/分钟,那么可列方程为( ).
A.B.
C.D.
5、(4分)下列各组数中,可以构成直角三角形的三边长的是( )
A.1,2,3B.2,3,4C.1,,D.1,,3
6、(4分)如图,在平面直角坐标系中,直线与y轴交于点B(0,4),与x轴交于点A,∠BAO=30°,将△AOB沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为( )
A.﹣8B.﹣16C.﹣8D.﹣12
7、(4分)下列二次根式是最简二次根式的是( )
A.B.C.D.
8、(4分)一元二次方程x2﹣4x﹣6=0经过配方可变形为( )
A.(x﹣2)2=10B.(x+2)2=10C.(x﹣4)2=6D.(x﹣2)2=2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=_____.
10、(4分)一次函数y=-3x+a的图像与两坐标轴所围成的三角形面积是6,则a的值为_________.
11、(4分)将的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是正方形的顶点都在格点上,若直线与正方形有公共点,则的取值范围是________________.
12、(4分)一个班有48名学生,在期末体育考核中,优秀的人数有16人,在扇形统计图中,代表体育考核成绩优秀的扇形的圆心角是__________度.
13、(4分)若甲、乙、丙、丁四个同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为s甲2=0.80,s乙2=1.31,s丙2=1.72,s丁2=0.42,则成绩最稳定的同学是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,点,分别为边,的中点,延长到点使.
求证:四边形是平行四边形.
15、(8分)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.
(1)求第一批每支钢笔的进价是多少元?
(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?
16、(8分)如图,用两张等宽的纸条交叉重叠地放在一起,重合的四边形是一个特殊的四边形.请判断这个特殊的四边形应该叫做什么,并证明你的结论.
17、(10分)用适当的方法解下列方程
(1)
(2)
18、(10分)作平行四边形ABCD的高CE,B是AE的中点,如图.
(1)小琴说:如果连接DB,则DB⊥AE,对吗?说明理由.
(2)如果BE:CE=1: ,BC=3cm,求AB.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)分式有意义的条件是______.
20、(4分)某市规定了每月用水不超过l8立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y(元)是用水x(立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为_____立方米.
21、(4分)使得二次根式有意义的x的取值范围是 .
22、(4分)如图,菱形的边长为2,点,分别是边,上的两个动点,且满足,设的面积为,则的取值范围是__.
23、(4分)如图,小明在“4x5”的长方形内丢一粒花生(将花生看作一个点),则花生落在阴影的部分的概率是_________
二、解答题(本大题共3个小题,共30分)
24、(8分)如图是两个全等的直角三角形(和)摆放成的图形,其中,,点B落在DE边上,AB与CD相交于点F.若,求这两个直角三角形重叠部分的周长.
25、(10分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?
26、(12分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)本次接受调查的跳水运动员人数为 ,图①中m的值为 ;
(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、是随机事件,故A符合题意;
B、是不可能事件,故B不符合题意;
C、是不可能事件,故C不符合题意;
D、是必然事件,故D不符合题意;
故选A.
本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的
概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不
发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2、C
【解析】
先求出直线y=﹣x+1与x轴的交点坐标,然后根据函数特征,写出在x轴上,直线y=2x+m在直线y=﹣x+1上方所对应的自变量的范围.
【详解】
解:直线y=﹣x+1与x轴的交点坐标为(1,0),
所以不等式组的解集为﹣2<x<1.
故选:C.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
3、B
【解析】
解:根据周角可以计算360°﹣∠α=220°,
再根据圆周角定理,得∠A的度数.
∵∠1=360°﹣∠α=220°,
∴∠A=∠1=220°÷2=110°.
故选B.
考点:圆周角定理.
4、C
【解析】
设熊二的速度为x米/分钟,则熊大的速度为1.2x米/分钟,根据题意可得走过300米,熊大比熊二少用2分钟,列方程即可.
【详解】
解:设熊二的速度为x米/分钟,则熊大的速度为1.2x米/分钟,
根据题意可得:,
故选:C.
本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.
5、C
【解析】
根据勾股定理的逆定理,判断三角形是否为直角三角形,需要验证三角形三边关系,两小边长的平方和等于最长边的平方即可.
【详解】
A.,不能构成直角三角形,此选项错误;
B.,不能构成直角三角形,此选项错误;
C.,能构成直角三角形,此选项正确;
D.,不能构成直角三角形,此选项错误;
故选:C.
考查了勾股定理的逆定理,利用三角形三边关系判定三角形是否为直角三角形,用到实数平方的计算,熟记定理内容,注意判定时,边长是平方关系.
6、D
【解析】
首先过C作CD⊥y轴,垂足为D,再根据勾股定理计算CD的长,进而计算C点的坐标,在代入反比例函数的解析式中,进而计算k的值.
【详解】
解:过点C作CD⊥y轴,垂足为D,
由折叠得:OB=BC=4,∠OAB=∠BAC=30°
∴∠OBA=∠CBA=60°=∠CBD,
在Rt△BCD中,∠BCD=30°,
∴BD=BC=2,CD= ,
∴C(﹣,6)代入得:k=﹣×6=﹣
故选:D.
本题主要考查求解反比例函数的解析式,关键在于构造辅助线计算CD的长度.
7、B
【解析】
根据最简二次根式的概念即可求出答案.
【详解】
(A)原式=2 ,故A不是最简二次根式;
(C)原式=2 ,故B不是最简二次根式;
(D)原式= ,故D不是最简二次根式;
故选:B.
此题考查最简二次根式,解题关键在于掌握运算法则
8、A
【解析】
先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方的形式即可.
【详解】
x2﹣4x=6,
x2﹣4x+4=1,
(x﹣2)2=1.
故选:A.
本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、25°.
【解析】
在Rt△ABC中,∠BAC=65°,所以∠ABC=90°-65°=25°.又AB∥CD,所以∠BCD=∠ABC=25°.
10、±6
【解析】
先根据坐标轴上点的坐标特征得到直线与坐标轴的交点坐标,再根据三角形面积公式得 ,然后解关于a的绝对值方程即可.
【详解】
解:当y=0时,y=-3x+a=0,解得x= ,则直线与x轴的交点坐标为(,0);
当x=0时,y=-3x+a=a,则直线与y轴的交点坐标为(0,a);
所以,解得:a=±6. 故选答案为:±6.
本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是( ,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.
11、≤k≤1.
【解析】
分别确定点A和点C的坐标,代入正比例函数的解析式即可求得k的取值范围.
【详解】
解:由题意得:点A的坐标为(1,1),点C的坐标为(1,1),
∵当正比例函数经过点A时,k=1,当经过点C时,k=,
∴直线y=kx(k≠0)与正方形ABCD有公共点,k的取值范围是≤k≤1,
故答案为:≤k≤1.
本题考查了正比例函数的性质,解题的关键是求得点A和点C的坐标,难度不大.
12、1
【解析】
先求出体育优秀的占总体的百分比,再乘以360°即可.
【详解】
解:圆心角的度数是:
故答案为:1.
本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
13、丁
【解析】
首先比较出S甲2、S乙2、S丙2、S丁2的大小关系,然后根据方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越,小,稳定性越好,判断出成绩最稳定的同学是谁即可.
【详解】
∵S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,
∴S丁2<S甲2<S乙2<S丙2,
∴成绩最稳定的是丁,
故答案为:丁.
此题主要考查了方差的含义和性质的应用,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】
根据中位线的性质得到,再得到,故可证明.
【详解】
解:∵,分别为,的中点,
∴EF是△ABC的中位线,
∴.
∵,
∴.
∴
∴四边形是平行四边形.
此题主要考查平行四边形的判定,解题的关键是熟知三角形的中位线定理及平行四边形的判定方法.
15、(1)15元;(2)1支.
【解析】
试题分析:(1)设第一批文具盒的进价是x元,则第二批的进价是每只1.2x元,根据两次购买的数量关系建立方程求出其解即可;
(2)设销售y只后开始打折,根据第二批文具盒的利润率不低于20%,列出不等式,再求解即可.
试题解析:解:(1)设第一批每只文具盒的进价是x元,根据题意得:
﹣=10
解得:x=15,经检验,x=15是方程的解.
答:第一批文具盒的进价是15元/只.
(2)设销售y只后开始打折,根据题意得:
(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥141×20%,解得:y≥1.
答:至少销售1只后开始打折.
点睛:本题考查了列分式方程和一元一次不等式的应用,解答时找到题意中的等量关系及不相等关系建立方程及不等式是解答的关键.
16、四边形是菱形,见解析.
【解析】
根据菱形的判定方法即可求解.
【详解】
解:四边形是菱形,
证明:过点分别作于点,于点,
∴,
∵两张纸条等宽
∴,,且,
∴四边形是平行四边形,
∴,
∴,
∴.
∴四边形是菱形.
此题主要考查菱形的判定,解题的关键是熟知菱形的判定定理.
17、(1),;(2)或.
【解析】
(1)先整理成一元二次方程的一半形式,然后用求根公式法求解即可;
(2)先移项,然后用配方法求解即可.
【详解】
(1)原方程整理为一般式为:,
,,,
,
则,
,;
(2),
,
,
,
或 ,
或.
本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
18、(1)BD⊥AE,理由见解析;(2)(cm).
【解析】
(1)直接利用平行四边形的性质得出BD∥CE,进而得出答案;
(2)直接利用勾股定理得出BE的长,进而得出答案.
【详解】
解:(1)对,
理由:∵ABCD是平行四边形,
∴CD∥AB且CD=AB.
又B是AE的中点,
∴CD∥BE且CD=BE.
∴BD∥CE,
∵CE⊥AE,
∴BD⊥AE;
(2)设BE=x,则CE=x,
在Rt△BEC中:x2+(x)2=9,
解得:x=,
故AB=BE=(cm).
此题主要考查了平行四边形的性质以及勾股定理,正确应用平行四边形的性质是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≠1
【解析】
分析:根据分母不为零分式有意义,可得答案.
解:由有意义,得
x﹣1≠0,
解得x≠1
有意义的条件是x≠1,
故答案为:x≠1.
20、1
【解析】
根据题意和函数图象中的数据可以求得当x>18时对应的函数解析式,根据102>54可知,小丽家用水量超过18立方米,从而可以解答本题.
【详解】
解:设当x>18时的函数解析式为y=kx+b,
图象过(18,54),(28,94)
∴,得
即当x>18时的函数解析式为:y=4x-18,
∵102>54,
∴小丽家用水量超过18立方米,
∴当y=102时,102=4x-18,得x=1,
故答案为:1.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
21、x≥﹣
【解析】
试题分析:根据被开方数大于等于0,可得2x+1≥0,解得x≥﹣.
考点:二次根式有意义的条件
22、.
【解析】
先证明为正三角形,根据直角三角形的特点和三角函数进行计算即可解答
【详解】
菱形的边长为2,,
和都为正三角形,
,,
,而,
,
;
,,
,
即,
为正三角形;
设,
则,
当时,最小,
,
当与重合时,最大,
,
.
故答案为.
此题考查等边三角形的判定与性质和菱形的性质,解题关键在于证明为正三角形
23、
【解析】
根据题意,判断概率类型,分别算出长方形面积和阴影面积,再利用几何概型公式加以计算,即可得到所求概率.
【详解】
解:长方形面积=4×5=20,
阴影面积=,
∴这粒豆子落入阴影部分的概率为:P=,
故答案为:.
本题给出丢豆子的事件,求豆子落入指定区域的概率.着重考查了长方形、三角形面积公式和几何概型的计算等知识,属于基础题.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
根据全等三角形的性质得出BC=EC,∠ABC=∠E=60°,求出△BCE是等边三角形,求出∠DCB=30°,∠BFC=90°,解直角三角形求出BF和CF,即可求出答案.
【详解】
解:如图
∵,,
∴,,
∴是等边三角形,
∴,
又∵,
∴,
又∵,在中,
∴,,
∴的周长是.
本题考查了全等三角形的性质,含30°角的直角三角形的性质,等边三角形的性质和判定,求出BF和CF的长是解此题的关键.
25、10
【解析】
试题分析:由题意可构建直角三角形求出AC的长,过C点作CE⊥AB于E,则四边形EBDC是矩形.BE=CD,AE可求,CE=BD,在Rt△AEC中,由两条直角边求出AC长.
试题解析:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形.∴EB=CD=4m,EC=8m.AE=AB-EB=10-4=6m.连接AC,在Rt△AEC中,.
考点:1.勾股定理的运用;2.矩形性质.
【详解】
请在此输入详解!
26、(1)40人;1;(2)平均数是15;众数16;中位数15.
【解析】
(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.
【详解】
解:(1)4÷10%=40(人),
m=100-27.5-25-7.5-10=1;
故答案为40,1.
(2)观察条形统计图,
∵,
∴这组数据的平均数为15;
∵在这组数据中,16出现了12次,出现的次数最多,
∴这组数据的众数为16;
∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,
∴这组数据的中位数为15.
本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份安徽省阜阳市2025届九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省阜阳九中学2025届九上数学开学学业质量监测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届安徽省亳州市名校九上数学开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。