安徽省阜阳市颍东区2024年九上数学开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:
①若a@b=0,则a=0或b=0
②a@(b+c)=a@b+a@c
③不存在实数a,b,满足a@b=a2+5b2
④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.
其中正确的是( )
A.②③④B.①③④C.①②④D.①②③
2、(4分)如图,▱ABCD的对角线AC,BD交于点O,已知,,,则的周长为
A.13B.17C.20D.26
3、(4分)下列各式正确的个数是( )①;②;③;④
A.0B.1C.2D.3
4、(4分)已知a<b,则下列不等式正确的是( )
A.a﹣3<b﹣3B.>C.﹣a<﹣bD.6a>6b
5、(4分)如图,正方形中,为上一点,,交的延长线于点.若,,则的长为( )
A.B.C.D.
6、(4分)能够判定一个四边形是平行四边形的条件是( )
A.一组对角相等B.两条对角线互相平分
C.两条对角线互相垂直D.一对邻角的和为180°
7、(4分)在函数y=中,自变量x的取值范围是( )
A.x≥-3且x≠0B.x<3
C.x≥3D.x≤3
8、(4分)从﹣3、﹣2、﹣1、1、2、3这六个数中,随机抽取一个数记作a,使关于x的分式方程有整数解,且使直线y=3x+8a﹣17不经过第二象限,则符合条件的所有a的和是( )
A.﹣4B.﹣1C.0D.1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为,,则产量较为稳定的品种是_____________(填“甲”或“乙”).
10、(4分)如果直线 y=-2x+k 与两坐标轴所围成的三角形面积是 9,则 k的值为_____.
11、(4分)如图,△OAB绕点O逆时针旋转90°到△OCD的位置,已知∠AOB=40°,则∠AOD的度数为_____.
12、(4分)如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快___s后,四边形ABPQ成为矩形.
13、(4分)将直线平移,使之经过点,则平移后的直线是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.
(1)求证:AB=AC;
(2)若∠BAC=60°,BC=6,求△ABC的面积.
15、(8分)已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.
求证:四边形DEFG是平行四边形.
16、(8分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.
(1)L号运动服一周的销售所占百分比为 .
(2)请补全条形统计图;
(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL号约多少件比较合适,请计算说明.
17、(10分)先化简,再求值:;其中a=.
18、(10分)如图,菱形的对角线和交于点,,,求和的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若方程的两根互为相反数,则________.
20、(4分)已知等腰三角形两条边的长为4和9,则它的周长______.
21、(4分)两个反比例函数C1:y=和C2:y=在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为_____.
22、(4分)《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽.问绳索长是多少?设绳索长为x尺,可列方程为_____.
23、(4分)当k取_____时,100x2﹣kxy+4y2是一个完全平方式.
二、解答题(本大题共3个小题,共30分)
24、(8分)先阅读下面的村料,再分解因式.
要把多项式分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得
.
这时,由于中又有公困式,于是可提公因式,从而得到,因此有
.
这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.
请用上面材料中提供的方法因式分解:
请你完成分解因式下面的过程
______
;
.
25、(10分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上,试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形
(1)以A为顶点的平行四边形;
(2)以A为对角线交点的平行四边形.
26、(12分)某景区的水上乐园有一批人座的自划船,每艘可供至位游客乘坐游湖,因景区加大宣传,预计今年游客将会增加.水上乐园的工作人员在去年月日一天出租的艘次人自划船中随机抽取了艘,对其中抽取的每艘船的乘坐人数进行统计,并制成如下统计图.
(1)求扇形统计图中, “乘坐1人”所对应的圆心角度数;
(2)估计去年月日这天出租的艘次人自划船平均每艘船的乘坐人数;
(3)据旅游局预报今年月日这天该景区可能将增加游客300人,请你为景区预计这天需安排多少艘4人座的自划船才能满足需求.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.
【详解】
①根据题意得:a@b=(a+b)2﹣(a﹣b)2 ∴(a+b)2﹣(a﹣b)2=0,
整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0, 解得:a=0或b=0,正确;
②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4ac
a@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac, ∴a@(b+c)=a@b+a@c正确;
③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2, 令a2+5b2=(a+b)2﹣(a﹣b)2, 解得,a=0,b=0,故错误;
④∵a@b=(a+b)2﹣(a﹣b)2=4ab, (a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,
∴a2+b2+2ab≥4ab, ∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab, 解得,a=b,
∴a@b最大时,a=b,故④正确,
考点:(1)、因式分解的应用;(2)、整式的混合运算;(3)、二次函数的最值
2、B
【解析】
由平行四边形的性质得出,,,即可求出的周长.
【详解】
四边形ABCD是平行四边形,
,,,
的周长.
故选:B.
本题主要考查了平行四边形的性质,并利用性质解题平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分.
3、B
【解析】
根据根式运算法则逐个进行计算即可.
【详解】
解:①,故错误;
②这个形式不存在,二次根式的被开分数为非负数,故错误;
③;,正确;
④,故错误.
故选B.
本题考查了二次根式的化简,注意二次根式要化最简.
4、A
【解析】
利用不等式的性质判断即可.
【详解】
解:A、在不等式a<b的两边同时减去3,不等式仍成立,即a﹣3<b﹣3,原变形正确,故本选项符合题意.
B、在不等式a<b的两边同时除以2,不等式仍成立,即<,原变形错误,故本选项不符合题意.
C、在不等式a<b的两边同时乘以﹣1,不等号方向改变,即﹣a>﹣b,原变形错误,故本选项不符合题意.
D、在不等式a<b的两边同时乘以6,不等式仍成立,即6a<6b,原变形错误,故本选项不符合题意.
故选:A.
此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.
5、D
【解析】
先根据题意得出△ABM∽△MCG,故可得出CG的长,再求出DG的长,根据△MCG∽△EDG即可得出结论.
【详解】
四边形ABCD是正方形,AB=12,BM=5,
.,
,
,
,
,,
,
,即,
解得,
,
,
,
,
,即,
解得.
故选D.
本题主要考查相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.
6、B
【解析】
试题分析:平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定方法选择即可.
解:根据平行四边形的判定可知B正确.
故选B.
【点评】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
7、D
【解析】
根据二次根式有意义的条件解答即可.
【详解】
由题意得3-x≥0,
解得:x≤3,
故选D.
本题考查二次根式有意义的条件,要使二次根式有意义必须满足被开方数大于等于0,熟练掌握二次根式有意义的条件是解题关键.
8、B
【解析】
先求出满足分式方程条件存立时a的值,再求出使直线y=3x+8a﹣17不经过第二象限时a的值,进而求出同时满足条件a的值.
【详解】
解:解分式方程得:
x=﹣,
∵x是整数,
∴a=﹣3,﹣2,1,3;
∵分式方程有意义,
∴x≠0或2,
∴a≠﹣3,
∴a=﹣2,1,3,
∵直线y=3x+8a﹣17不经过第二象限,
∴8a﹣17≤0
∴a≤,
∴a的值为:﹣3、﹣2、﹣1、1、2,
综上,a=﹣2,1,
和为﹣2+1=﹣1,
故选:B.
本题主要考查了一次函数的性质以及分式方程的解的知识,解题的关键是掌握根的个数与系数的关系以及分式有意义的条件,此题难度不大.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、乙
【解析】因为S甲2≈0.01>S乙2≈0.002,方差小的为乙,所以本题中比较稳定的是乙.
10、±1.
【解析】
试题分析:当x=0时,y=k;当y=0时,,∴直线与两坐标轴的交点坐标为A(0,k),B(,0),∴S△AOB=,∴k=±1.故答案为±1.
考点:一次函数综合题.
11、50°
【解析】
根据旋转的性质得出全等,根据全等三角形性质求出∠DOC=40°,代入∠AOD=∠AOC﹣∠DOC求出即可.
【详解】
解:∵△OAB绕点O逆时针旋转90°到△OCD的位置,∠AOB=40°,
∴△OAB≌△OCD,∠COA=90°,
∴∠DOC=∠AOB=40°,
∴∠AOD=∠AOC﹣∠COD=90°﹣40°=50°,
故答案为50°
12、1
【解析】
设最快x秒,当BP=AQ时,四边形ABPQ成为矩形,设最快x秒,则1x=20﹣2x.解方程可得.
【详解】
设最快x秒,四边形ABPQ成为矩形,由BP=AQ得
3x=20﹣2x.
解得x=1.
故答案为1
本题考核知识点:平行四边形性质,矩形判定.解题关键点:熟记平行四边形性质,矩形判定.
13、y=2x-1.
【解析】
根据平移不改变k的值,可设平移后直线的解析式为y=2x+b,然后将点(9,3)代入即可得出平移后的直线解析式.
【详解】
设平移后直线的解析式为y=2x+b.
把(9,3)代入直线解析式得3=2×9+b,
解得b=-1.
所以平移后直线的解析式为y=2x-1.
故答案为:y=2x-1.
本题考查了一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时,k的值不变是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)
【解析】
(1)由角平分线上的点到角两边的距离相等可得DE=DF,利用HL易证Rt△BDE≌Rt△CDF,从而得到∠B=∠C,然后再用AAS证明△ABD≌△ACD即可得证.
(2)由∠BAC=60°和AB=AC可得△ABC为等边三角形,从而得到AB=BC=6,再由勾股定理求出高AD,即可求△ABC的面积.
【详解】
(1)∵AD平分∠BAC,DE⊥AB,DF⊥AC
∴DE=DF,∠BAD=∠CAD
在Rt△BDE和Rt△CDF中,
∵BD=CD,DE=DF
∴Rt△BDE≌Rt△CDF(HL)
∴∠B=∠C
在△ABD和△ACD中,
∵∠BAD=∠CAD,∠B=∠C,BD=CD
∴△ABD≌△ACD(AAS)
∴AB=AC
(2)∵∠BAC=60°,AB=AC
∴△ABC为等边三角形
∴AB=BC=6
又∵△ABD≌△ACD(已证)
∴∠ADB=∠ADC=90°
∵BC=6,BD=CD
∴BD=3
在Rt△ABD中,AD=
∴S△ABC=
本题考查全等三角形,等边三角形的判定与性质与勾股定理,熟练掌握角平分线的性质定理,得出全等条件是解题的关键.
15、证明见解析.
【解析】
利用三角形中线的性质、中位线的定义和性质证得四边形EFGD的对边DE∥GF,且DE=GF=BC;然后由平行四边形的判定--对边平行且相等的四边形是平行四边形,证得结论.
【详解】
证明:如图,连接ED、DG、GF、FE.
∵BD、CE是△ABC的两条中线,
∴点D、E分别是边AC、AB的中点,
∴DE∥CB,DE=CB;
又∵F、G分别是OB、OC的中点,
∴GF∥CB,GF=CB;
∴DE∥GF,且DE=GF,
∴四边形DEFG是平行四边形(对边平行且相等的四边形是平行四边形).
考查了三角形中位线定理、平行四边形的判定.平行四边形的判定:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.
16、(1)20%;(2)详见解析;(3)96.
【解析】
(1)利用百分比之和为1,计算即可;
(2)求出M、L的件数,画出条形图即可;
(3)利用样本估计总体的思想解决问题即可;
【详解】
解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.
故答案为20%.
(2)总数=13÷26%=50,
M有50×30%=15,L有50×20%=10,
条形统计图如图所示:
(3)购进XL号约600×16%=96(件)比较合适.
本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
17、
【解析】
先将分式化简,然后代入即可.
【详解】
解:
当x=−1时
原式.
本题主要考查分式方程的化简,熟练分式方程化简步骤是解答此题的关键.
18、
【解析】
依据菱形的性质可得Rt△ABO中∠ABO=30°,则可得AO和BO长,根据AC=2AO和BD=2BO可得结果.
【详解】
解:菱形中,,
又,
所以,三角形为等边三角形,
所以,;
,
本题主要考查了菱形的性质,解决菱形中线段的长度问题一般转化为在直角三角形中利用勾股定理求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据一元二次方程根与系数的关系即可求出答案.
【详解】
∵两根互为相反数,
∴根据韦达定理得:m² - 1 = 0,
解得:m = 1 或 m = -1
当 m = 1 时,方程是 x² + 1 = 0 没有实数根
当 m = -1 时,方程是 x² - 1 = 0 有两个实数根
所以 m = -1
故答案为:-1
本题考查一元二次方程根与系数的关系,x1+x2=,x1x2=,熟练掌握韦达定理并进行检验是否有实数根是解题关键.
20、1
【解析】
分9是腰长与底边长两种情况讨论求解即可.
【详解】
①当9是腰长时,三边分别为9、9、4时,能组成三角形,
周长=9+9+4=1,
②当9是底边时,三边分别为9、4、4,
∵4+4<9,
∴不能组成三角形,
综上所述,等腰三角形的周长为1.
故答案为:1.
本题考查了等腰三角形的两腰相等的性质,难点在于要分情况讨论求解.
21、1
【解析】
试题解析:∵PC⊥x轴,PD⊥y轴,
∴S矩形PCOD=2,S△AOC=S△BOD=,
∴四边形PAOB的面积=S矩形PCOD-S△AOC-S△BOD=2--=1.
22、(x﹣3)2+64=x2
【解析】
设绳索长为x尺,根据勾股定理列出方程解答即可
【详解】
解:设绳索长为x尺,可列方程为(x﹣3)2+82=x2,
故答案为:(x﹣3)2+64=x2
本题考查了勾股定理在实际生活中的应用,找出等量关系,正确列出一元二次方程是解题的关键.
23、±40
【解析】
利用完全平方公式判断即可确定出k的值.
【详解】
解:∵100x2-kxy+4y2是一个完全平方式,
∴k=±40,
故答案为:±40
此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1);(2) (m+x)(m-n);(3) (y-2)(x2y-4).
【解析】
如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.依此即可求解.
【详解】
(1)ab-ac+bc-b2
=a(b-c)-b(b-c)
=(a-b)(b-c);
故答案为(a-b)(b-c).
(2)m2-mn+mx-nx
=m(m-n)+x(m-n)
=(m+x)(m-n);
(3)x2y2-2x2y-4y+8
=x2y(y-2)-4(y-2)
=(y-2)(x2y-4).
考查了因式分解-提公因式法,因式分解-分组分解法,本题采用两两分组的方式.
25、(1)见解析;(2)见解析
【解析】
(1)直接利用平行四边形的性质分析得出答案;
(2)直接利用菱形的性质得出符合题意的答案.
【详解】
解:(1)如图所示:平行四边形ABCD即为所求;
(2)如图所示:平行四边形DEFM即为所求.
此题考查应用设计与作图,正确应用网格分析是解题关键.
26、(1)18°;(2)3;(3)250
【解析】
(1)首先计算“乘坐1人”的百分比,在利用圆周角计算“乘坐1人”所对应的圆心角度数.
(2)首先计算出总人数,再利用平均法计算每艘的人数.
(3)根据平均值估算新增加人数需要的船数.
【详解】
解:(1)“乘坐1人”所对应的圆心角度数是:
(2)估计去年月日这天出租的艘次人自划船平均每艘船的乘坐人数是:
人
(3)艘4人座的自划船才能满足需求.
本题主要考查扇形统计图的计算,关键在于一一对应的关系,是考试的热点问题,必须熟练掌握.
题号
一
二
三
四
五
总分
得分
批阅人
安徽省阜阳颍东区四校联考2024年数学九上开学经典模拟试题【含答案】: 这是一份安徽省阜阳颍东区四校联考2024年数学九上开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省阜阳市名校2025届九上数学开学综合测试模拟试题【含答案】: 这是一份安徽省阜阳市名校2025届九上数学开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省阜阳市城南中学2024年九上数学开学调研试题【含答案】: 这是一份安徽省阜阳市城南中学2024年九上数学开学调研试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。