搜索
    上传资料 赚现金
    英语朗读宝

    安徽省合肥市长丰县2025届数学九上开学学业水平测试试题【含答案】

    安徽省合肥市长丰县2025届数学九上开学学业水平测试试题【含答案】第1页
    安徽省合肥市长丰县2025届数学九上开学学业水平测试试题【含答案】第2页
    安徽省合肥市长丰县2025届数学九上开学学业水平测试试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省合肥市长丰县2025届数学九上开学学业水平测试试题【含答案】

    展开

    这是一份安徽省合肥市长丰县2025届数学九上开学学业水平测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克( )
    A.7元B.6.8元C.7.5元D.8.6元
    2、(4分)在下述命题中,真命题有( )
    (1)对角线互相垂直的四边形是菱形;(2)三个角的度数之比为的三角形是直角三角形;(3)对角互补的平行四边形是矩形;(4)三边之比为的三角形是直角三角形..
    A.个B.个C.个D.个
    3、(4分)如图,在所在平面上任意取一点O(与A、B、C不重合),连接OA、OB、OC,分别取OA、OB、OC的中点、、,再连接、、得到,则下列说法不正确的是( )
    A.与是位似图形
    B.与是相似图形
    C.与的周长比为2:1
    D.与的面积比为2:1
    4、(4分)下列四个图形中,既是轴对称又是中心对称的图形是( )
    A.4个B.3个C.2个D.1个
    5、(4分)函数y=﹣x的图象与函数y=x+1的图象的交点在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    6、(4分)已知一次函数与的图象如图,则下列结论:①;②;③关于的方程的解为;④当时,,其中正确的个数是
    A.1B.2C.3D.4
    7、(4分)如图,在中,D,E,F分别为BC,AC,AB边的中点,于H,,则DF等于( )
    A.4B.8C.12D.16
    8、(4分)菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为( )
    A.4cmB.5cmC.5cm或8cmD.5cm或cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是_____.
    10、(4分)分解因式___________
    11、(4分)如图,正方形ABCD的边长是18,点E是AB边上的一个动点,点F是CD边上一点,,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点,处,当点落在直线BC上时,线段AE的长为________.
    12、(4分)如图,在平面直角坐标系xOy中,函数y1的图象与直线y1=x+1交于点A(1,a).则:
    (1)k的值为______;
    (1)当x满足______时,y1>y1.
    13、(4分)x的3倍与4的差是负数,用不等式表示为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,方格纸中每个小正方形的边长都是1个单位长度,的三个顶点,,.
    (1)将以点为旋转中心旋转,得到△,请画出△的图形;
    (2)平移,使点的对应点坐标为,请画出平移后对应的△的图形;
    (3)若将△绕某一点旋转可得到△,请直接写出旋转中心的坐标.
    15、(8分)已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm.
    (1)求证:CD⊥AB;
    (2)求该三角形的腰的长度.
    16、(8分)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.
    (1)当x≥30,求y与x之间的函数关系式;
    (2)若小李4月份上网20小时,他应付多少元的上网费用?
    (3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?
    17、(10分)八年级380名师生参加户外拓展活动,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表
    (1)设租用乙种客车x辆,租车总费用为y元求出y(元)与x(辆)之间的函数表达式;
    (2)当乙种客车租用多少辆时,能保障所有的师生能参加户外拓展活动且租车费用最少,最少费用是多少元?
    18、(10分)先化简再求值,其中x=-1.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,将菱形纸片ABCD折叠,使点C,D的对应点C',D'都落在直线AB上,折痕为EF,若EF=1.AC'=8,则阴影部分(四边形ED'BF)的面积为________ 。
    20、(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,则∠ECD的度数为__________度.
    21、(4分)如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,AE平分∠BAD,AE交BC于E,则∠BOE的大小为______.
    22、(4分)如图,当时, 有最大值;当时,随的增大而______.(填“增大”或“减小”)
    23、(4分)如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=__
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为积极响应“弘扬传统文化”的号召,某学校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.
    大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:
    请根据调查的信息分析:
    (1)求活动启动之初学生“一周诗词诵背数量”的中位数;
    (2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
    (3)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
    25、(10分)如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.
    (1)求点C的坐标及直线BC的函数表达式;
    (2)点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.
    ①若∠BDE=45°,求BDE的面积;
    ②在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E的坐标.
    26、(12分)关于x的二次函数的图象与x轴交于点和点,与y轴交于点
    (1)求二次函数的解析式;
    (2)求二次函数的对称轴和顶点坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量,即可得出答案.
    【详解】
    售价应定为:≈6.8(元);
    故选B.
    本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求6、7、8这三个数的平均数.
    2、C
    【解析】
    根据矩形、菱形、直角三角形的判定定理对四个选项逐一分析.
    【详解】
    解:(1)对角线平分且互相垂直的四边形是菱形,故错误;
    (2)180°÷8×4=90°,故正确;
    (3)∵平行四边形的对角相等,又互补,
    ∴每一个角为90°
    ∴这个平行四边形是矩形,故正确;
    (4)设三边分别为x,x:2x,

    ∴由勾股定理的逆定理得,
    这个三角形是直角三角形,故正确;
    ∴真命题有3个,
    故选:C.
    本题考查的知识点:矩形、菱形、直角三角形的判定,解题的关键是熟练掌握这几个图形的判定定理.
    3、D
    【解析】
    根据三角形中位线定理得到A1B1=AB,A1C1=AC,B1C1=BC,根据位似变换的概念、相似三角形的性质判断即可.
    【详解】
    ∵点A1、B1、C1分别是OA、OB、OC的中点,
    ∴A1B1=AB,A1C1=AC,B1C1=BC,
    ∴△ABC与△A1B1C1是位似图形,A正确;
    △ABC与是△A1B1C1相似图形,B正确;
    △ABC与△A1B1C1的周长比为2:1,C正确;
    △ABC与△A1B1C1的面积比为4:1,D错误;
    故选:D.
    考查的是位似变换,掌握位似变换的概念、相似三角形的性质是解题的关键.
    4、C
    【解析】
    根据轴对称图形与中心对称图形的概念结合各图形的特点求解.
    【详解】
    ①是轴对称图形,也是中心对称图形,符合题意;
    ②是轴对称图形,不是中心对称图形,不符合题意;
    ③是轴对称图形,是中心对称图形,符合题意;
    ④轴对称图形,不是中心对称图形,不符合题意.
    综上可得①③符合题意.
    故选:C.
    考查了中心对称图形与轴对称图形的识别.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.
    5、B
    【解析】
    试题分析:先把与组成方程组求得交点坐标,即可作出判断.
    由解得
    所以函数的图象与函数的图象的交点在第二象限
    故选B.
    考点:点的坐标
    点评:平面直角坐标系内各个象限内的点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    6、C
    【解析】
    根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x≥2时,一次函数y1=x+a在直线y2=kx+b的上方,则可对④进行判断.
    【详解】
    一次函数经过第一、二、四象限,
    ,,所以①正确;
    直线的图象与轴交于负半轴,
    ,,所以②错误;
    一次函数与的图象的交点的横坐标为2,
    时,,所以③正确;
    当时,,所以④正确.
    故选.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程,一次函数的性质.
    7、B
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半求出AC,再根据三角形中位线定理解答即可.
    【详解】
    解:∵AH⊥BC,E为AC边的中点,
    ∴AC=2HE=16,
    ∵D,F分别为BC,AB边的中点,
    ∴DF=AC=8,
    故选:B.
    本题考查的是三角形中位线定理、直角三角形斜边上中线的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    8、D
    【解析】
    作出图形,根据菱形的对角线互相垂直平分求出、,然后分正方形在的两边两种情况补成以为斜边的,然后求出、,再利用勾股定理列式计算即可得解.
    【详解】
    解:,,


    如图1,正方形在的上方时,过点作交的延长线于,


    在中,,
    如图2,正方形在的下方时,过点作于,


    在中,,
    综上所述,长为或.
    故选:.
    本题考查了菱形的性质,正方形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,难点在于分情况讨论并作辅助线构造出直角三角形,作出图形更形象直观.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2.1.
    【解析】
    连接CP,利用勾股定理列式求出AB,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.
    【详解】
    解:如图,连接CP.
    ∵∠ACB=90°,AC=3,BC=1,
    ∴AB=,
    ∵PE⊥AC,PF⊥BC,∠ACB=90°,
    ∴四边形CFPE是矩形,
    ∴EF=CP,
    由垂线段最短可得CP⊥AB时,线段EF的值最小,
    此时,S△ABC=BC•AC=AB•CP,
    即×1×3=×5•CP,
    解得CP=2.1.
    ∴EF的最小值为2.1.
    故答案为2.1.
    10、
    【解析】
    原式提取公因式,再利用完全平方公式分解即可.
    【详解】
    原式=2x(y2+2y+1)=2x(y+1)2,
    故答案为2x(y+1)2
    此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    11、4或1
    【解析】
    分两种情况:①D′落在线段BC上,②D′落在线段BC延长线上,分别连接ED、ED′、DD′,利用折叠的性质以及勾股定理,即可得到线段AE的长.
    【详解】
    解:分两种情况:
    ①当D′落在线段BC上时,连接ED、ED′、DD′,如图1所示:
    由折叠可得,D,D'关于EF对称,即EF垂直平分DD',
    ∴DE=D′E,
    ∵正方形ABCD的边长是18,
    ∴AB=BC=CD=AD=18,
    ∵CF=8,
    ∴DF=D′F=CD−CF=10,
    ∴CD′==6,
    ∴BD'=BC−CD'=12,
    设AE=x,则BE=18−x,
    在Rt△AED和Rt△BED'中,
    由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+122,
    ∴182+x2=(18−x)2+122,
    解得:x=4,即AE=4;
    ②当D′落在线段BC延长线上时,连接ED、ED′、DD′,如图2所示:
    由折叠可得,D,D'关于EF对称,即EF垂直平分DD',
    ∴DE=D′E,
    ∵正方形ABCD的边长是18,
    ∴AB=BC=CD=AD=18,
    ∵CF=8,
    ∴DF=D′F=CD−CF=10,CD'==6,
    ∴BD'=BC+CD'=24,
    设AE=x,则BE=18−x,
    在Rt△AED和Rt△BED'中,
    由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+242,
    ∴182+x2=(18−x)2+242,
    解得:x=1,即AE=1;
    综上所述,线段AE的长为4或1;
    故答案为:4或1.
    本题考查了正方形的性质、折叠变换的性质、线段垂直平分线的性质、勾股定理等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键,注意分类讨论.
    12、2; x<﹣2或0<x<2.
    【解析】
    (2)将A点坐标分别代入两个解析式,可求k;
    (2)由两个解析式组成方程组,求出交点,通过图象可得解.
    【详解】
    (2)∵函数y2的图象与直线y2=x+2交于点A(2,a),
    ∴a=2+2=2,
    ∴A(2,2),
    ∴2,
    ∴k=2,
    故答案为:2;
    (2)∵函数y2的图象与直线y2=x+2相交,
    ∴x+2,
    ∴x2=2,x2=﹣2,
    ∵y2>y2,∴x<﹣2或0<x<2,
    故答案为:x<﹣2或0<x<2.
    本题考查了反比例函数与一次函数的交点问题,待定系数法,关键是熟练利用图象表达意义解决问题.
    13、
    【解析】
    “x的3倍”即3x,“与4的差”可表示为,根据负数即“”可得不等式.
    【详解】
    x的3倍为“3x”, x的3倍与4的差为“3x-4”,
    所以x的3倍与4的差是负数,用不等式表示为,
    故答案为.
    本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)见解析;(2)见解析;(3)旋转中心坐标.
    【解析】
    (1)利用旋转的性质得出对应点坐标进而得出答案;
    (2)利用平移规律得出对应点位置,进而得出答案;
    (3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.
    【详解】
    (1)如图所示,即为所求;
    (2)如图所示,即为所求;
    (3)旋转中心坐标.
    此题主要考查了旋转的性质以及图形的平移等知识,根据题意得出对应点坐标是解题关键.
    15、(1)见解析;(2)
    【解析】
    试题分析:根据勾股定理的逆定理直接证明即可.
    设腰长为x,则,根据勾股定理列出方程,解方程即可.
    试题解析:
    (1)∵BC=20cm,CD=16cm,BD=12cm,满足,
    根据勾股定理逆定理可知,∠BDC=90°,即CD⊥AB;
    (2)设腰长为x,则,由上问可知,
    即:,解得:腰长.
    点睛:勾股定理的逆定理:如果三角形中,两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.
    16、(1)y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.
    【解析】
    【分析】(1)由图可知,当x≥30时,图象是一次函数图象,设函数关系式为y=kx+b,使用待定系数法求解即可;
    (2)根据题意,从图象上看,30小时以内的上网费用都是60元;
    (3)根据题意,因为60<75<90,当y=75时,代入(1)中的函数关系计算出x的值即可.
    【详解】(1)当x≥30时,设函数关系式为y=kx+b,
    则,
    解得,
    所以y=3x﹣30;
    (2)若小李4月份上网20小时,由图象可知,他应付60元的上网费;
    (3)把y=75代入,y=3x-30,解得x=35,
    ∴若小李5月份上网费用为75元,则他在该月份的上网时间是35小时.
    【点睛】本题考查了一次函数的应用,待定系数法求一次函数关系式,准确识图、熟练应用待定系数法是解题的关键.
    17、(1)y=-100x+3850;(2)当乙为2辆时,能保障费用最少,最少费用为3650元.
    【解析】
    (1)y=租甲种车的费用+租乙种车的费用,由题意代入相关数据即可得;
    (2)根据题意确定出x的取值范围,再根据一次函数的增减性即可得.
    【详解】
    (1)由题意,得
    y=550(7-x)+450x,
    化简,得y=-100x+3850,
    即y(元)与x(辆)之间的函数表达式是y=-100x+3850;
    (2)由题意,得45x+60(7﹣x)≥380,解得,x≤(x为自然数),
    ∵y=-100x+3850中k=-100

    相关试卷

    安徽省淮南市西部2024年九上数学开学学业水平测试模拟试题【含答案】:

    这是一份安徽省淮南市西部2024年九上数学开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    安徽省合肥市滨湖区寿春中学2024-2025学年数学九上开学学业水平测试试题【含答案】:

    这是一份安徽省合肥市滨湖区寿春中学2024-2025学年数学九上开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    安徽省合肥市滨湖区寿春中学2024-2025学年数学九上开学学业水平测试试题【含答案】:

    这是一份安徽省合肥市滨湖区寿春中学2024-2025学年数学九上开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map