安徽省合肥市中学国科技大附中2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
展开
这是一份安徽省合肥市中学国科技大附中2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )
A.75°B.60°C.55°D.45°
2、(4分)如图,平行四边形中,,,,动点从点出发,沿运动至点停止,设运动的路程为,的面积为,则与的函数关系用图象表示正确的是( )
A.B.
C.D.
3、(4分)下列所述图形中,既是中心对称图形,又是轴对称图形的是( )
A.矩形B.平行四边形C.正五边形D.正三角形
4、(4分)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )
A.(2,4)B.(1,5)C.(1,-3)D.(-5,5)
5、(4分)化简+-的结果为( )
A.0 B.2 C.-2 D.2
6、(4分)爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中.下面图形中表示爷爷离家的距离y(米)与爷爷离开公园的时间x(分)之间的函数关系是( )
A.B.
C.D.
7、(4分)下列多项式中能用完全平方公式分解的是
A.B.C.D.
8、(4分)将一幅三角板如图所示摆放,若,那么∠1的度数为()(提示:延长EF或DF)
A.45°B.60°C.75°D.80°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依此为2,4,6,8,...,顶点依此用A1,A2,A3,表示,则顶点A55的坐标是___.
10、(4分)如图,ABCD的对角线AC,BD交于点O,M是CD的中点,连接OM,若OM=2,则BC的长是______________.
11、(4分)2019年6月12日,重庆直达香港高铁的车票正式开售据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高在此之前技术部门做了大量测试,在一次测试中一高铁列车从地出发匀速驶向地,到达地停止;同时一普快列车从地出发,匀速驶向地,到达地停止且,两地之间有一地,其中,如图①两列车与地的距离之和(千米)与普快列车行驶时间(小时)之间的关系如图②所示则高铁列车到达地时,普快列车离地的距离为__________千米.
12、(4分)已知x=4是一元二次方程x2-3x+c=0的一个根,则另一个根为______.
13、(4分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了多销售,增加利润,超市准备适当降价。据测算,若每箱降价2元,每天可多售出4箱.
(1)如果要使每天销售饮料获利14000元,则每箱应降价多少元?
(2)每天销售饮料获利能达到15000元吗?若能,则每箱应降价多少元?若不能,请说明理由.
15、(8分)如图所示,已知一次函数的图象与轴,轴分别交于点,.以为边在第一象限内作等腰,且,.过作轴于点.的垂直平分线交于点,交轴于点.
(1)求点的坐标;
(2)连接,判定四边形的形状,并说明理由;
(3)在直线上有一点,使得,求点的坐标.
16、(8分)如图,在中,,点在上,若,平分.
(1)求的长;
(2)若是中点,求线段的长.
17、(10分)(1)解方程: (2)解方程:
18、(10分)某学校组织了“热爱宪法,捍卫宪法”的知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表,请你根据统计图表解答下列问题.
(1)此次抽样调查的样本容量是_________;
(2)写出表中的a=_____,b=______,c=________;
(3)补全学生成绩分布直方图;
(4)比赛按照分数由高到低共设置一、二、三等奖,若有25%的参赛学生能获得一等奖,则一等奖的分数线是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:______,使四边形ABCD为平行四边形(不添加任何辅助线).
20、(4分)已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.
21、(4分)如果分式有意义,那么的取值范围是____________.
22、(4分)八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.
23、(4分)矩形中,对角线交于点,,则的长是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥AC.
(1)求证:BE=AF;
(2)若∠ABC=60°,BD=6,求四边形ADEF的面积。
25、(10分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?
(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
26、(12分)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和
排球,已知篮球和排球的单价比为3:2,单价和为160元.
(1)篮球和排球的单价分别是多少元?
(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.
【详解】
解:∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,∠BAF=45°,
∵△ADE是等边三角形,
∴∠DAE=60°,AD=AE,
∴∠BAE=90°+60°=150°,AB=AE,
∴∠ABE=∠AEB=(180°﹣150°)=15°,
∴∠BFC=∠BAF+∠ABE=45°+15°=60°;
故选:B.
本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.
2、D
【解析】
当点E在BC上运动时,三角形的面积不断增大,当点E在DC上运动时,三角形的面积不变,当点E在AD上运动时三角形的面积不等减小,然后计算出三角形的最大面积即可得出答案.
【详解】
当点E在BC上运动时,三角形的面积不断增大,最大面积= ×3××4=3;
当点E在DC上运动时,三角形的面积为定值3.
当点E在AD上运动时三角形的面不断减小,当点E与点A重合时,面积为0.
故选:D.
此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.
3、A
【解析】
试题分析:在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.根据定义可得:平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合.
考点:轴对称图形与中心对称图形.
4、B
【解析】
试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.
考点:点的平移.
5、D
【解析】
解:原式=.故选D.
6、B
【解析】
由题意,爷爷在公园回家,则当时,;从公园回家一共用了45分钟,则当时,;
【详解】
解:由题意,爷爷在公园回家,则当时,;
从公园回家一共用了分钟,则当时,;
结合选项可知答案B.
故选:B.
本题考查函数图象;能够从题中获取信息,分析运动时间与距离之间的关系是解题的关键.
7、B
【解析】
根据完全平方公式的结构特征判断即可.
【详解】
选项A、C、D都不能够用完全平方公式分解,选项B能用完全平方公式分解,即.
故选B.
本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
8、C
【解析】
延长DF交BC于点G,根据两直线平行内错角相等可得度数,由外角的性质可得的度数,易知∠1的度数.
【详解】
解:如图,延长DF交BC于点G
故选:C
本题考查了平行线的性质,由题意添加辅助线构造内错角是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(14,14)
【解析】
观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律
【详解】
∵55=413+3,A 与A 在同一象限,即都在第一象限,
根据题中图形中的规律可得
3=40+3,A 的坐标为(0+1,0+1),即A (1,1),
7=41+3,A 的坐标为(1+1,1+1), A (2,2),
11=42+3,A 的坐标为(2+1,2+1), A (3,3);
…
55=413+3,A (14,14),A 的坐标为(13+1, 13+1)
故答案为(14,14)
此题考查点的坐标,解题关键在于发现坐标的规律
10、1
【解析】
证明是的中位线即可求解.
【详解】
解:四边形是平行四边形,
,
是中点,
,
∴是的中位线,
,
故答案为:1.
本题考查平行四边形的性质、三角形中位线定理等知识,解题的关键是根据平行四边形性质判断出是的中位线.
11、1
【解析】
由图象可知4.5小时两列车与C地的距离之和为0,于是高铁列车和普快列车在C站相遇,由于AC=2BC,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B站,此时两车距C站的距离之和为1千米,由于V高铁=2V普快,因此BC距离为1千米的三分之二,即240千米,普快离开C占的距离为1千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B站时,普快列车离开B站240+120=1千米,此时距A站的距离为720-1=1千米.
【详解】
∵图象过(4.5,0)
∴高铁列车和普快列车在C站相遇
∵AC=2BC,
∴V高铁=2V普快,
BC之间的距离为:1×=240千米,全程为AB=240+240×2=720千米,
此时普快离开C站1×=120千米,
当高铁列车到达B站时,普快列车距A站的距离为:720-120-240=1千米,
故答案为:1.
此题考查一次函数的应用.解题关键是由函数图象得出相关信息,明确图象中各个点坐标的实际意义.联系行程类应用题的数量关系是解决问题的关键,图象与实际相结合容易探求数量之间的关系,也是解决问题的突破口.
12、-1
【解析】
另一个根为t,根据根与系数的关系得到4+t=3,然后解一次方程即可.
【详解】
设另一个根为t,
根据题意得4+t=3,
解得t=-1,
即另一个根为-1.
故答案为-1.
此题考查根与系数的关系,解题关键在于掌握若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=− .
13、2.
【解析】
以BC为边作等边三角形BCG,连接FG,AG,作GH⊥AC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,根据勾股定理即可得到结论.
【详解】
以BC为边作等边三角形BCG,连接FG,AG,
作GH⊥AC交AC的延长线于H,
∵△BDE和△BCG是等边三角形,
∴DC=EG,
∴∠FDC=∠FEG=120°,
∵DF=EF,
∴△DFC≌△EFG(SAS),
∴FC=FG,
∴在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,
∴当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,
∵BC=CG=AB=2,AC=2,
在Rt△CGH中,∠GCH=30°,CG=2,
∴GH=1,CH=,
∴AG= ==2,
∴AF+CF的最小值是2.
此题考查轴对称-最短路线问题,等边三角形的性质,直角三角形的性质,正确的作出辅助线是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)每箱应降价50元,可使每天销售饮料获利14000元.(2)获利不能达到15000元.
【解析】
(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可;
(2)根据题意列出方程,然后用根的判别式去验证.
【详解】
(1)要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,
(120−x)(100+2x)=14000,
整理得x2−70x+1000=0,
解得x1=20,x2=50;
∵为了多销售,增加利润,
∴x=50
答:每箱应降价50元,可使每天销售饮料获利14000元.
(2)由题意得:(120−x)(100+2x)=1500,
整理得x2−70x+1500=0,
∵△=702−4×1500
相关试卷
这是一份安徽省合肥市五十中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届安徽合肥市中学国科技大附属中学数学九年级第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省合肥市中学国科技大附中数学九年级第一学期开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。