安徽省淮南市名校2024-2025学年九上数学开学监测试题【含答案】
展开
这是一份安徽省淮南市名校2024-2025学年九上数学开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知反比例函数y=kx-1的图象过点A(1,-2),则k的值为( )
A.1B.2C.-2D.-1
2、(4分)将方程化成一元二次方程的一般形式,正确的是( ).
A.B.C.D.
3、(4分)矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上的F点.则AE的长是( )
A.3
B.4
C.5
D.6
4、(4分)若关于x的方程的解为负数,则m的取值范围是( )
A.B.C.D.
5、(4分)已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+2上,则y1,y2,y3的值的大小关系是( )
A.y3<y1<y2 B.y1<y2<y3 C.y3>y1>y2 D.y1>y2>y3
6、(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,若BC=3,∠ABC=60°,则BD的长为( )
A.2B.3C.D.
7、(4分)如果一个多边形的内角和是外角和的3倍,那么这个多边形是( )
A.四边形B.六边形C.八边形D.十边形
8、(4分)如图,Rt△ABC中,∠ACB=90°,若AB=15,则正方形ADEC和正方形BCFG的面积之和为( )
A.150B.200C.225D.无法计算
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知图中的每个小方格都是边长为工的小正方形,每个小正方形的顶点称为格点,若与是位似图形,且顶点都在格点上,则位似中心的坐标是______.
10、(4分)己知反比例函数的图像经过第一、三象限,则常数的取值范围是___.
11、(4分)当x________时,分式有意义.
12、(4分)如果最简二次根式和是同类二次根式,那么a=_______
13、(4分)如图,已知点是双曲线在第一象限上的一动点,连接,以为一边作等腰直角三角形(),点在第四象限,随着点的运动,点的位置也不断的变化,但始终在某个函数图像上运动,则这个函数表达式为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知x=,y=,求下列各式的值:
(1)x2-xy+y2;
(2).
15、(8分)如图,在中,的角平分线交于点,交的延长线于点,连接.
(1)请判断的形状,并说明理由;
(2)已知,,求的面积.
16、(8分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.
(1)求A、B、C三点坐标;(2)求△ABC的面积.
17、(10分)某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答以下问题:
(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求与之间的函数关系式.
(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.
18、(10分)关于的方程有两个不相等的实数根.
求实数的取值范围;
是否存在实数,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出的值;若不存在,说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知直线y=﹣与x轴、y轴分别交于点A、B,在坐标轴上找点P,使△ABP为等腰三角形,则点P的个数为_____个.
20、(4分)如图,矩形ABCD中,对角线AC与BD相交于点O,AB=3,BC=4,则△AOB的周长为_____.
21、(4分)若△ABC的三边长分别为5、13、12,则△ABC的形状是 .
22、(4分)如图,已知,与之间的距离为3, 与之间的距离为6, 分别等边三角形的三个顶点,则此三角形的边长为__________.
23、(4分)如图,菱形ABCD中,DE⊥AB,垂足为点E,连接CE.若AE=2,∠DCE=30°,则菱形的边长为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知非零实数满足,求的值.
25、(10分)已知直线y=kx+b经过点(2,﹣3)与点(﹣1,2),求k与b.
26、(12分)如图①,在平面直角坐标系中,直线:分别与轴、轴交于点、,且与直线:交于点,以线段为边在直线的下方作正方形,此时点恰好落在轴上.
(1)求出三点的坐标.
(2)求直线的函数表达式.
(3)在(2)的条件下,点是射线上的一个动点,在平面内是否存在点,使得以、、、为顶点的四边形是菱形?若存在,直接写出点的坐标;若不存在,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
直接把点(1,-2)代入反比例函数y= 即可得出结论.
【详解】
∵反比例函数y=的图象过点A(1,−2),
∴−2= ,
解得k=−2.
故选C.
此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式
2、B
【解析】
通过移项把方程4x2+5x=81化成一元二次方程的一般形式.
【详解】
方程4x2+5x=81化成一元二次方程的一般形式是4x2+5x-81=1.
故选B.
此题主要考查了一元二次方程的一般形式,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=1(a≠1).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.
3、A
【解析】
由矩形的性质和折叠的性质可得CF=DC=10,DE=EF,由勾股定理可求BF的长,即可得AF=4,在Rt△AEF中,由勾股定理即可求得AE的长.
【详解】
∵四边形ABCD是矩形,
∴AB=CD=10,BC=AD=8,∠A=∠D=∠B=90°,
∵折叠,
∴CD=CF=10,EF=DE,
在Rt△BCF中,BF==6,
∴AF=AB-BF=10-6=4,
在Rt△AEF中,AE2+AF2=EF2,
∴AE2+16=(8-AE)2,
∴AE=3,
故选A.
本题考查了翻折变换,矩形的性质,勾股定理,熟练掌握折叠的性质是本题的关键.
4、B
【解析】
先把m当作已知条件求出x的值,再根据x的值是负数列出关于m的不等式,求出m的取值范围即可.
【详解】
解:∵1x-m=1+x,
∴x=,
∵关于x的方程1x-m=1+x的解是负数,
∴<0,
解得m<-1.
故选:B.
本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.
5、D
【解析】k=-3
相关试卷
这是一份安徽省淮南市谢家集区2024-2025学年数学九上开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年辽宁省营口市名校九上数学开学监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年辽宁省铁岭市名校九上数学开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。