安徽省宿州市泗县2024-2025学年数学九年级第一学期开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)刘师傅要检验一个零件是否为平行四边形,用下列方法不能检验的是( )
A.AB∥CD,AB=CDB.AB∥CD,AD=BC
C.AB=CD,AD = BCD.AB∥CD,AD∥BC
2、(4分)如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是( )
A.(-8,0)B.(8,-8)C.(-8,8)D.(0,16)
3、(4分)如图,在4×4的网格纸中,ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有( )
A.点M,点NB.点M,点QC.点N,点PD.点P,点Q
4、(4分)若使二次根式在实数范围内有意义,则的取值范围是( )
A.B.C.D.
5、(4分)如图,点 P 是反比例函数 y =6/x的图象上的任意一点,过点 P分别作两坐标轴的垂线,与坐标轴构成矩形 OAPB,点 D 是矩形OAPB 内任意一点,连接 DA、DB、DP、DO,则图中阴影 部分的面积
A.1B.2C.3D.4
6、(4分)下列图形是中心对称图形的是( )
A.B.
C.D.
7、(4分)二次根式中的x的取值范围是( )
A.x<﹣2B.x≤﹣2C.x>﹣2D.x≥﹣2
8、(4分)小颖从家出发,走了20分钟,到一个离家1000米的图书室,看了40分钟的书后,用15分钟返回到家,图(3)中表示小颖离家时间x与距离y之间的关系正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,对角线与相交于点,在上有一点,连接,过点作的垂线和的延长线交于点,连接,,,若,,则_________.
10、(4分)若最简二次根式和是同类二次根式,则m=_____.
11、(4分)在中,,,点是中点,点在上,,将沿着翻折,点的对应点是点,直线与交于点,那么的面积__________.
12、(4分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且AP=2,∠BAC=60°,有一点F在边AB上运动,当运动到某一位置时△FAP面积恰好是△EAP面积的2倍,则此时AF的长是______.
13、(4分)方程的解是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,在中,AB=AC,∠ABC =,D是BC边上一点,以AD为边作,使AE=AD,+=180°.
(1)直接写出∠ADE的度数(用含的式子表示);
(2)以AB,AE为边作平行四边形ABFE,
①如图2,若点F恰好落在DE上,求证:BD=CD;
②如图3,若点F恰好落在BC上,求证:BD=CF.
15、(8分)小梅在浏览某电影评价网站时,搜索了最近关注到的甲、乙、丙三部电影,网站通过对观众的抽样调查,得到这三部电影的评分数据统计图分别如下:
甲、乙、丙三部电影评分情况统计图
根据以上材料回答下列问题:
(1)小梅根据所学的统计知识,对以上统计图中的数据进行了分析,并通过计算得到这三部电影抽样调查的样本容量,观众评分的平均数、众数、中位数,请你将下表补充完整:
甲、乙、丙三部电影评分情况统计表
(2)根据统计图和统计表中的数据,可以推断其中_______电影相对比较受欢迎,理由是
_______________________________________________________________________.(至少从两个不同的角度说明你推断的合理性)
16、(8分)一分钟投篮测试规定,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:
(1)请你根据上述统计数据,把下面的图和表补充完整;
一分钟投篮成绩统计分析表:
(2)下面是小明和小聪的一段对话,请你根据(1)中的表,写出两条支持小聪的观点的理由.
17、(10分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点,求这个一次函数的解析式.
18、(10分)如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为A(-2,4)、B(-2,0)、C(-4,1),结合所给的平面直角坐标系解答下列问题:
(1)画出△ABC关于原点O中心对称图形△A1B1C1.
(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=_____.
20、(4分)关于x的一次函数,当_________时,它的图象过原点.
21、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AD,AD=6,AB=10,则△AOB的面积为 _________________
22、(4分)古算题:“笨人执竿要进屋,无奈门框拦住竿,横多四尺竖多二,没法急得放声哭,有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足,借问竿长多少数,谁人算出我佩服,”若设竿长为 x 尺,则可列方程为_____(方程无需化简).
23、(4分)如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平行四边形ABCD中,AE=CE.
(1)用尺规或只用无刻度的直尺作出的角平分线,保留作图痕迹,不需要写作法.
(2)设的角平分线交边AD于点F,连接CF,求证:四边形AECF为菱形.
25、(10分)如图,□ABCD的对角线AC、BD相交于点O,AC平分∠BAD,DP//AC,CP//BD.
(1)求证:四边形ABCD是菱形;
(2)若AC=4,BD=6,求OP的长.
26、(12分)列方程或方程组解应用题:
为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平行四边形的判定方法一一判断即可.
【详解】
解:A、∵AB∥CD,AB=CD,
∴四边形ABCD是平行四边形.
B、由AB∥CD,AD=BC,无法判断四边形是平行四边形,四边形可能是等腰梯形.
C、∵AB=CD,AD=BC
∴四边形ABCD是平行四边形.
D、∵AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形.
故选B.
本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,属于中考常考题型.
2、C
【解析】
根据正方形的性质,依次可求A2(2,0),A3(2,2),A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8).
【详解】
解:∵O(0,0),A(0,1),
∴A1(1,1),
∴正方形对角线OA1=,
∴OA2=2,
∴A2(2,0),
∴A3(2,2),
∴OA3=2,
∴OA4=4,
∴A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8);
故选:C.
本题考查点的规律;利用正方形的性质,结合平面内点的坐标,探究An的坐标规律是解题的关键.
3、C
【解析】
画出中心对称图形即可判断
【详解】
解:观察图象可知,点P.点N满足条件.
故选:C.
本题考查利用旋转设计图案,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
4、A
【解析】
先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
【详解】
∵二次根式在实数范围内有意义,
∴x−50,
解得x5.
故选:A.
考查二次根式有意义的条件,掌握被开方数大于等于0是解题的关键.
5、C
【解析】
试题分析:P是反比例函数的图象的任意点,过点P分别做两坐标轴的垂线,∴与坐标轴构成矩形OAPB的面积=1.∴阴影部分的面积=×矩形OAPB的面积=2.
考点:反比例函数系数k的几何意义
6、C
【解析】
根据中心对称图形的概念求解.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误.
故选:C.
本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
7、D
【解析】
根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.
【详解】
由题意,得
2x+4≥0,
解得x≥-2,
故选D.
本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.
8、A
【解析】
在0—20分钟,小颖从家出发到图书室的过程,随着时间x的改变,距离y越来越大;20—60分钟,小颖在看书,所以随着时间x的改变,距离y不变;60—75分钟,小颖返回家,所以随着时间x的改变,距离y变小.所以答案选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据平行四边形的对边平行,可得AD∥BC,利用两直线平行,同旁内角互补,可得∠G+∠GBC=180°,从而求出∠G=∠FBC=90°,根据“SAS”可证△AGB≌△FBC,利用全等三角形的性质,可得AG=BF=1,BC=BG,然后利用勾股定理求出FG=3,从而求出BC=BG=AD=4,即得GD=5,再利用勾股定理即可得出BD的长.
【详解】
延长BF、DA交于点点G,如图所示
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠G+∠GBC=180°
又∵BF⊥BC,
∴∠FBC=90°
在△AGB和△FBC中,
∴△AGB≌△FBC
∴AG=BF=1,BC=BG
∵
∴BC=BG=AD=3+1=4
∴GD=4+1=5
∴
此题主要考查平行四边形的性质、勾股定理以及全等三角形的判定与性质,熟练掌握,即可解题.
10、1.
【解析】
由最简二次根式的定义可得3m+1=8+2m,解出m即可.
【详解】
由题意得:3m+1=8+2m,解得:m=1.
故答案为1.
本题主要考查最简二次根式的定义.
11、或
【解析】
通过计算E到AC的距离即EH的长度为3,所以根据DE的长度有两种情况:①当点D在H点上方时,②当点D在H点下方时,两种情况都是过点E作交AC于点E,过点G作交AB于点Q,利用含30°的直角三角形的性质和勾股定理求出AH,DH的长度,进而可求AD的长度,然后利用角度之间的关系证明,再利用等腰三角形的性质求出GQ的长度,最后利用即可求解.
【详解】
①当点D在H点上方时,
过点E作交AC于点E,过点G作交AB于点Q,
,点是中点,
.
∵,
.
,
,
.
,
,
,,
,
.
由折叠的性质可知,,
,
,
.
又 ,
.
,
.
,
即,
.
,
;
②当点D在H点下方时,
过点E作交AC于点E,过点G作交AB于点Q,
,点是中点,
.
∵,
.
,
,
.
,
,
,,
,
.
由折叠的性质可知,,
,
,
.
又 ,
.
,
.
,
即,
.
,
,
综上所述,的面积为或.
故答案为:或.
本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.
12、1.
【解析】
作PH⊥AB于H,根据角平分线的性质得到PH=PE,根据余弦的定义求出AE,根据三角形的面积公式计算即可.
【详解】
作PH⊥AB于H,
∵AD是∠BAC的平分线,PE⊥AC,PH⊥AB,
∴PH=PE,
∵P是∠BAC的平分线AD上一点,
∴∠EAP=30°,
∵PE⊥AC,
∴∠AEP=90°,
∴AE=AP×cs∠EAP=3,
∵△FAP面积恰好是△EAP面积的2倍,PH=PE,
∴AF=2AE=1,
故答案为1.
本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
13、
【解析】
解:,.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)证明见解析.
【解析】
试题分析:(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°-2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;
(2)①由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质,即可证得结论;
②由在△ABC中,AB=AC,∠ABC=α,可得∠B=∠C=α,四边形ABFE是平行四边形,可得AE∥BF,AE=BF.即可证得:∠EAC=∠C=α,又由(1)可证得AD=CD,又由AD=AE=BF,证得结论.
试题解析:(1)∠ADE =.
(2)①证明:∵四边形ABFE是平行四边形,
∴AB∥EF.
∴.
由(1)知,∠ADE =,
∴.
∴AD⊥BC.
∵AB=AC,
∴BD=CD.
②证明:
∵AB=AC,∠ABC =,
∴.
∵四边形ABFE是平行四边形,
∴AE∥BF,AE=BF.
∴.
由(1)知,,
∴.
∴.
∴AD=CD.
∵AD=AE=BF,
∴BF=CD.
∴BD=CF.
考点:1.平行四边形的判定与性质;2.等腰三角形的性质.
15、(1)填表见解析;(2)丙;①丙电影得分的平均数最高;②丙电影得分没有低分.
【解析】
(1)根据众数、中位数和平均数的定义,结合条形图分别求解可得;
(2)从平均数、中位数和众数的意义解答,合理即可.
【详解】
(1)甲电影的众数为5分,
乙电影的样本容量为35+30+13+12=100,中位数是=4分,
丙电影的平均数为=(3)78分
补全表格如下表所示:
甲、乙、丙三部电影评分情况统计表
(2)丙,①丙电影得分的平均数最高;②丙电影得分没有低分.
此题考查了条形统计图,表格,中位数,众数,平均数,弄清题意是解本题的关键.
16、 (1)见解析;(2)乙组成绩好于甲组,理由见解析
【解析】
(1)根据测试成绩表求出乙组成绩为1分和9分的人数,补全统计图,再根据平均数的计算方法和中位数的定义求出平均数和中位数,即可补全分析表;
(2)根据平均分、方差、中位数、合格率的意义即可写出支持小聪的观点的理由.
【详解】
(1)根据测试成绩表即可补全统计图(如图):
补全分析表:甲组平均分(4×1+5×2+6×5+1×2+8×1+9×4)÷15=6.8,
乙组中位数是第8个数,是1.
(2)甲乙两组平均数一样,乙组的方差低于甲组,说明乙组成绩比甲组稳定,又乙组合格率比甲组高,所以乙组成绩好于甲组.
此题考查频数(率)分布直方图,方差,中位数,加权平均数,解题关键在于掌握中位数和方差的运算公式.
17、y=2x+1
【解析】
设一次函数的解析式为y=kx+b,然后将A、B两点代入解析式列式计算即可.
【详解】
解:设一次函数的解析式为y=kx+b,
因为一次函数的图象经过A(﹣2,﹣3),B(1,3)两点
所以,
解得:k=2,b=1.
∴函数的解析式为:y=2x+1.
本题考查的是待定系数法求解一次函数解析式,能够掌握待定系数法求解解析式的方法是解题的关键.
18、 (1)见解析;(2)图形见解析,点B2、C2的坐标分别为(0,-2),(-2,-1)
【解析】
(1)先作出点A、B、C关于原点的对称点,A1,B1,C1,顺次连接各点即可;
(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2,由点B2、C2在坐标系中的位置得出各点坐标即可.
【详解】
(1)△ABC关于原点O对称的△A1B1C1如图所示:
(2)平移后的△A2B2C2如图所示:点B2、C2的坐标分别为(0,-2),(-2,-1).
本题考查了作图﹣旋转变换,熟知图形旋转的性质是解答此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
∵∠ACB=90°,D为AB的中点,
∴CD=AB=×6=1.
故答案为1.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
20、
【解析】
由一次函数图像过原点,可知其为正比例函数,所以,求出k值即可.
【详解】
解: 函数图像过原点
该函数为正比例函数
故答案为:
本题考查了一次函数与正比例函数,一次函数,当时,为正比例函数,正比例函数图像过原点,正确理解正比例函数的概念及性质是解题的关键.
21、12
【解析】
∵BD⊥AD,AD=6,AB=10,
,
∴ .
∵四边形ABCD是平行四边形,
22、(x−1)1+(x−4)1=x1
【解析】
设竿长为x尺,根据题意可得,屋门的宽为x−4,高为x−1,对角线长为x,然后根据勾股定理列出方程.
【详解】
解:设竿长为x尺,
由题意得:(x−1)1+(x−4)1=x1.
故答案为:(x−1)1+(x−4)1=x1.
本题考查了利用勾股定理解决实际问题,解答本题的关键是根据题意表示出屋门的宽,高.
23、36°
【解析】
由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.
【详解】
∵五边形ABCDE是正五边形,
∴∠B=108°,AB=CB,
∴∠ACB=(180°﹣108°)÷2=36°;
故答案为36°.
二、解答题(本大题共3个小题,共30分)
24、(1)见详解;(2)见解析.
【解析】
(1)只用无刻度直尺作图过程如下:①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;
(2)先根据AF=EC,AF∥CE,判定四边形AECF是平行四边形,再根据AE=EC,即可得出平行四边形AECF是菱形.
【详解】
解:(1)如图所示,EO为∠AEC的角平分线;
(2)∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AFE=∠FEC,
又∵∠AEF=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF,
∴AF=EC,
∴四边形AECF是平行四边形,
又∵AE=EC,
∴平行四边形AECF是菱形.
本题主要考查了平行四边形的性质以及菱形的判定,解题时注意:一组邻边相等的平行四边形是菱形.
25、(1)见解析;(2)
【解析】
(1)首先通过角平分线的定义和平行四边形的性质,平行线的性质得出,则有,再利用一组邻边相等的平行四边形是菱形即可证明;
(2)首先根据题意和菱形的性质证明四边形OCPD是矩形,然后利用矩形的性质和勾股定理即可得出答案.
【详解】
(1)∵AC平分∠BAD,
.
∵四边形ABCD是平行四边形,
,
,
,
,
∴平行四边形ABCD是菱形;
(2)∵平行四边形ABCD是菱形,
∴,
.
∵DPAC,CPBD,
∴四边形OCPD是平行四边形.
,
∴四边形OCPD是矩形,
∴ .
本题主要考查四边形,掌握矩形,菱形的判定及性质和勾股定理是解题的关键.
26、3.2克.
【解析】
设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.
【详解】
解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:,
解得:x=3.2,
经检验:x=3.2是原分式方程的解,且符合题意.
答:A4薄型纸每页的质量为3.2克.
本题考查分式方程的应用,掌握题目中等量关系是关键,注意分式方程结果要检验.
题号
一
二
三
四
五
总分
得分
批阅人
电影
样本容量
平均数
众数
中位数
甲
100
(3)45
5
乙
(3)66
5
丙
100
3
(3)5
成绩(分)
4
5
6
7
8
9
甲组(人)
1
2
5
2
1
4
乙组(人)
1
1
4
5
2
2
统计量
平均分
方差
中位数
合格率
优秀率
甲组
2.56
6
80.0%
26.7%
乙组
6.8
1.76
86.7%
13.3%
电影
样本容量
平均数
众数
中位数
甲
100
(3)45
5
5
乙
100
(3)66
5
4
丙
100
(3)78
3
(3)5
统计量
平均分
方差
中位数
合格率
优秀率
甲组
6.8
2.56
6
80.0%
26.1%
乙组
6.8
1.16
1
86.1%
13.3%
安徽省宿州市第十一中学2024年九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份安徽省宿州市第十一中学2024年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省宿州市第九中学2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份安徽省宿州市第九中学2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省六安市2024-2025学年九年级数学第一学期开学学业质量监测试题【含答案】: 这是一份安徽省六安市2024-2025学年九年级数学第一学期开学学业质量监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。