![安徽省宣城2024-2025学年数学九年级第一学期开学统考试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16252577/0-1728952876668/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省宣城2024-2025学年数学九年级第一学期开学统考试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16252577/0-1728952876716/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省宣城2024-2025学年数学九年级第一学期开学统考试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16252577/0-1728952876739/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
安徽省宣城2024-2025学年数学九年级第一学期开学统考试题【含答案】
展开这是一份安徽省宣城2024-2025学年数学九年级第一学期开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )
A.B.C.D.
2、(4分)下列方程中属于一元二次方程的是( )
A.B.C.D.
3、(4分)如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的相邻两边DC和DE的长分别是5,1.则EB的长是( )
A.0.5B.1C.1.5D.2
4、(4分)如图,函数 y1=﹣2x 与 y2=ax+3 的图象相交于点 A(m,2),则关于 x 的不等式﹣2x>ax+3 的解集是( )
A.x>2B.x<2C.x>﹣1D.x<﹣1
5、(4分)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是( )
A.x>0B.x<0C.x>-1D.x>2
6、(4分)下列根式中属于最简二次根式的是( )
A.B.C.D.
7、(4分)如图,一次函数,的图象与的图象相交于点,则方程组的解是()
A.B.C.D.
8、(4分)-个多边形的内角和等于它的外角和的两倍,则这个多边形的边数为( )
A.6B.7C.8D.9
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若,则= .
10、(4分)如图,直线y=﹣x+4分别与x轴,y轴相交于点A,B,点C在直线AB上,D是坐标平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_____.
11、(4分)如图,正方形ABCD的边长为,点E、F分别为边AD、CD上一点,将正方形分别沿BE、BF折叠,点A的对应点M恰好落在BF上,点C的对应点N给好落在BE上,则图中阴影部分的面积为__________;
12、(4分)已知点A(4,0),B(0,﹣2),C(a,a)及点D是一个平行四边形的四个顶点,则线段CD长的最小值为___.
13、(4分)如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=__
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,∠ACB=90°,D是AB中点,过点B作直线CD的垂线,垂足为E,
求证:∠EBC=∠A.
15、(8分)先化简,再求值:,其中
16、(8分)定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC,同时我们还发现损矩形中有公共边的两个三角形角的特点,在公共边的同侧的两个角是相等的。如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC。请再找一对这样的角来 =
(2)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连结BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由。
(3)在第(2)题的条件下,若此时AB=,BD=,求BC的长。
17、(10分)先化简,再求值:,其中x=,y=.
18、(10分)(1)如图(1),已知:正方形ABCD的对角线交于点O,E是AC上的一动点,过点A作AG⊥BE于G,交BD于F.求证:OE=OF.
(2)在(1)的条件下,若E点在AC的延长线上,以上结论是否成立,为什么?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次函数的图象不经过__________象限
20、(4分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处若,则为______ .
21、(4分)已知一次函数y=ax+b的图象经过点(﹣2,0)和点(0,﹣1),则不等式ax+b>0的解集是_____.
22、(4分)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是______.
23、(4分)一次函数y=-2x+4的图象与x轴交点坐标是______,与y轴交点坐标是_________
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在由边长为1个单位的长度的小正方形组成的网格图中,已知点O及△ABC的顶点均为网格线的交点
(1)在给定网格中,以O为位似中心,将△ABC放大为原来的三倍,得到请△A′B′C′,请画出△A′B′C′;
(2)B′C′的长度为___单位长度,△A′B′C′的面积为___平方单位。
25、(10分)体育课上,甲、乙两个小组进行定点投篮对抗赛,每组10人,每人投10次.下表是甲组成绩统计表:
(1)请计算甲组平均每人投进个数;
(1)经统计,两组平均每人投进个数相同且乙组成的方差为3.1.若从成绩稳定性角度看,哪一组表现更好?
26、(12分)如图,矩形的对角线相交于点.
(1)判断四边形的形状,并进行证明;(2)若,求四边形的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF===,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论.
【详解】
过F作FH⊥AD于H,交ED于O,则FH=AB=1.
∵BF=1FC,BC=AD=3,
∴BF=AH=1,FC=HD=1,
∴AF===,
∵OH∥AE,
∴=,
∴OH=AE=,
∴OF=FH﹣OH=1﹣=,
∵AE∥FO,∴△AME∽△FMO,
∴=,∴AM=AF=,
∵AD∥BF,∴△AND∽△FNB,
∴=,
∴AN=AF=,
∴MN=AN﹣AM=﹣=,故选B.
构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线
2、A
【解析】
根据一元二次方程的定义直接进行判断
【详解】
解:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程.符合这个定义.
故选:A
本题考查了一元二次方程的概念:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程.
3、B
【解析】
直接利用菱形的性质得出AD的长,再利用勾股定理得出AE的长,进而利用平移的性质得出答案.
【详解】
解:∵有一块菱形纸片ABCD,DC=5,
∴AD=BC=5,
∵DE=2,∠DEA=90°,
∴AE=4,
则BE=5﹣4=2.
故选:B.
此题主要考查了图形的剪拼以及菱形的性质,正确得出AE的长是解题关键.
4、D
【解析】
因为函数与的图象相交于点A(m,2),把点A代入可求出,所以点A(-1,2),然后把点A代入解得, 不等式,
可化为,解不等式可得:,故选D.
5、C
【解析】
首先找到当y>0时,图象所在位置,再根据图象可直接得到答案.
【详解】
当y>0时,图象在x轴上方,
∵与x交于(-1,0),
∴y>0时,自变量x的取值范围是x>-1,
故选:C.
考查了一次函数与一元一次不等式,关键是能从图象中找到对应的直线.
6、A
【解析】
根据最简二次根式的定义选择即可.
【详解】
、是最简二次根式,故本选项正确;
、不是最简二次根式,故本选项错误;
、不是最简二次根式,故本选项错误;
、不是最简二次根式,故本选项错误.
故选:.
本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.
7、A
【解析】
根据图象求出交点P的坐标,根据点P的坐标即可得出答案.
【详解】
解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),
∴方程组的解是,
故选A.
本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.
8、A
【解析】
根据题意得(n-2)•180=720,
解得:n=6,
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.
考点:二次根式有意义的条件.
10、(2,﹣2)或(6,2)
【解析】
分析:设点C的坐标为(x,﹣x+4).分两种情况,分别以C在x轴的上方、C在x轴的下方做菱形,画出图形,根据菱形的性质找出点C的坐标即可得出D点的坐标.
详解:∵一次函数解析式为线y=﹣x+4,∴B(0,4),A(4,0),如图一.∵四边形OADC是菱形,设C(x,﹣x+4),∴OC=OA==4,整理得:x2﹣6x+8=0,解得x1=2,x2=4,∴C(2,2),∴D(6,2);
如图二.∵四边形OADC是菱形,设C(x,﹣x+4),∴AC=OA==4,整理得:x2﹣8x+12=0,解得x1=2,x2=6,∴C(6,﹣2),∴D(2,﹣2);
故答案为(2,﹣2)或(6,2).
点睛:本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.
11、
【解析】
分析:设NE=x,由对称的性质和勾股定理,用x分别表示出ON,OE,OM,在直角△OEN中用勾股定理列方程求x,则可求出△OBE的面积.
详解:连接BO.
∠ABE=∠EBF=∠FBC=30°,AE=1=EM,BE=2AE=2.
∠BNF=90°,∠NEO=60°,∠EON=30°,
设EN=x,则EO=2x,ON=x=OM,
∴OE+OM=2x+x=(2+)x=1.∴x==2-.
∴ON=x=(2-)=2-3.
∴S=2S△BOE=2×(×BE×ON)=2×[×2×(2-3)]=4-6.
故答案为.
点睛:翻折的本质是轴对称,所以注意对称点,找到相等的线段和角,结合勾股定理列方程求出相关的线段后求解.
12、3.
【解析】
讨论两种情形:①CD是对角线,②CD是边.CD是对角线时CF⊥直线y=x时,CD最小.CD是边时,CD=AB=2,通过比较即可得出结论.
【详解】
如图,由题意得:点C在直线y=x上,
①如果AB、CD为对角线,AB与CD交于点F,当FC⊥直线y=x时,CD最小,
易知直线AB为y=x﹣2,
∵AF=FB,
∴点F坐标为(2,﹣1),
∵CF⊥直线y=x,
设直线CF为y=﹣x+b′,F(2,﹣1)代入得b′=1,
∴直线CF为y=﹣x+1,
由,解得:,
∴点C坐标.
∴CD=2CF=2×.
如果CD是平行四边形的边,则CD=AB=>3,
∴CD的最小值为3.
故答案为3.
本题考查平行四边形的性质、坐标与图形的性质、垂线段最短、勾股定理等知识,学会分类讨论是解题的关键,灵活运用垂线段最短解决实际问题,属于中考常考题型.
13、
【解析】
求出形变前正方形的面积,形变后菱形的面积,两面积之比=菱形的“形变度”,求△AEF的面积,根据两面积之比=菱形的“形变度”,即可解答.
【详解】
如图,
在图2中,形变前正方形的面积为:a2,形变后的菱形的面积为:
∴菱形形变前的面积与形变后的面积之比:
∵这个菱形的“形变度”为2:,
∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,
∵若这个菱形的“形变度”k=,
∴
即
∴S△A′E′F′=.
故答案为:.
考查菱形的性质,读懂题目中菱形的“形变度”的概念是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、详见解析
【解析】
由直角三角形斜边中线等于斜边的一半可得CD=BD,从而可得∠DCB=∠ABC,再根据直角三角形两锐角互余通过推导即可得出答案.
【详解】
∵∠ACB=90°,
∴∠A+∠ABC=90°,
又∵D是AB中点,
∴CD=BD,
∴∠DCB=∠ABC,
又∵∠E=90°,
∴∠ECB+∠EBC=90°,
∴∠EBC=∠A.
本题考查了直角三角形斜边中线的性质,直角三角形两锐角互余,等腰三角形的性质,熟练掌握和灵活运用相关性质是解题的关键.
15、,
【解析】
根据分式的混合运算法则把原式化简,把x的值代入计算即可
【详解】
解:原式
当时,
原式
本题考查整式的混合运算-化简求值,解题的关键是明确整式的混合运算的计算方法.
16、(1)∠ABD=∠ACD;(2)四边形ACEF为正方形,理由见解析;(3)5.
【解析】
(1)以AD为公共边,有∠ABD=∠ACD;
(2)证明△ADC是等腰直角三角形,得AD=CD,则AE=CF,根据对角线相等的菱形是正方形可得结论;
(3)如图2,作辅助线构建直角三角形,证明△ABC≌△CHE,得CH=AB=3,根据平行线等分线段定理可得BG=GH=4,从而得结论.
【详解】
解:(1)由图1得:△ABD和△ADC有公共边AD,在AD同侧有∠ABD和∠ACD,此时∠ABD=∠ACD;
(2)四边形ACEF为正方形,理由是:
∵∠ABC=90°,BD平分∠ABC,
∴∠ABD=∠CBD=45°
∴∠DAC=∠CBD=45°
∵四边形ACEF是菱形,
∴AELCF,
∴∠ADC=90°,
∴△ADC是等腰直角三角形,
∴AD=CD,.AE=CF,
∴菱形ACEF是正方形;
(3)如图2,过D作DG⊥BC于G,过E作EH⊥BC,交BC的延长线于H,
∵∠DBG=45°,
∴△BDG是等腰直角三角形,BD=4,
∵BG=4,四边形ACEF是正方形,
∴AC=CE,∠ACE=90°,AD=DE,
易得△ABC≌△CHE,
∴CH=AB=3,AB//DG//EH,AD=DE,
∴BG=GH=4,
∴CG=4-3=1,
∴BC=BG+CG=4+1=5.
本题是四边形的综合题,也是新定义问题,考查了损矩形和损矩形的直径的概念,平行线等分线段定理,菱形的性质,正方形的判定等知识,认真阅读理解新定义,第3问有难度,作辅助线构建全等三角形是关键.
17、x+y,.
【解析】
试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题.
试题解析:原式= ==x+y,
当x=,y==2时,原式=﹣2+2=.
18、(1)详见解析;(2)以上结论仍然成立.
【解析】
(1)利用正方形的性质得OA=OB,∠AOB=∠BOC=90°,则利用等角的余角相等得到∠GAE=∠OBE,则可根据”ASA“判断△AOF≌△BOE,从而得到OF=OE;
(2)同样方法证明△AOF≌△BOE,仍然得到OF=OE.
【详解】
解:(1)证明:∵四边形ABCD为正方形,
∴OA=OB,∠AOB=∠BOC=90°,
∵AG⊥BE于点G,
∴∠AGE=90°,
∴∠GAE=∠OBE,
在△AOF和△BOE中,,
∴△AOF≌△BOE(ASA),
∴OF=OE;
(2)解:以上结论仍然成立.理由如下:
同样可证明△AOF≌△BOE(ASA),所以OF=OE.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质;两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、二
【解析】
根据一次函数的图像即可求解.
【详解】
一次函数过一三四象限,故不经过第二象限.
此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.
20、105°
【解析】
由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.
【详解】
∵AD∥BC,
∴∠ADB=∠DBG,
由折叠可得∠ADB=∠BDG,
∴∠DBG=∠BDG,
又∵∠1=∠BDG+∠DBG=50°,
∴∠ADB=∠BDG=25°,
又∵∠2=50°,
∴△ABD中,∠A=105°,
∴∠A′=∠A=105°,
故答案为:105°.
本题主要考查了翻折变换(折叠问题),平行四边形的性质,熟练掌握折叠性质和平行四边形额性质是解答本题的关键.
21、x<﹣2
【解析】
根据点A和点B的坐标得到一次函数图象经过第二、三、四象限,根据函数图象得到当x>-2时,图象在x轴上方,即y>1.
【详解】
解:∵一次函数y=ax+b的图象经过(-2,1)和点(1,-1),
∴一次函数图象经过第二、三、四象限,
∴当x<-2时,y>1,即ax+b>1,
∴关于x的不等式ax+b<1的解集为x<-2.故答案为:x<-2.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
22、1
【解析】
试题解析:∵a是一元二次方程x2-1x+m=0的一个根,-a是一元二次方程x2+1x-m=0的一个根,
∴a2-1a+m=0①,a2-1a-m=0②,
①+②,得2(a2-1a)=0,
∵a>0,
∴a=1.
考点:一元二次方程的解.
23、 (2,0) (0,4)
【解析】把y=0代入y=2x+4得:0=2x+4,x=−2,
令x=0,代入y=2x+4解得y=4,
∴一次函数y=2x+4的图象与y轴交点坐标这(0,4),
即一次函数y=2x+4与x轴的交点坐标是(−2,0),与y轴交点坐标这(0,4).
二、解答题(本大题共3个小题,共30分)
24、(1)如图所示;见解析;(2)3,9;
【解析】
(1)利用位似图形的性质得出对应点坐标进而得出答案;
(2)根据勾股定理和三角形的面积公式即可得到结论.
【详解】
(1)如图所示:△A′B′C′即为所求:
(2)如图所示:B′C′的长度= =3 ;
∵A′C′=3,
∴△A′B′C′的面积为= ×3×6=9平方单位,
故答案为:3,9.
此题考查作图-位似变换,勾股定理和三角形的面积公式,解题关键在于掌握作图法则
25、 (1)甲组平均每人投进个数为7个;(1)乙组表现更好.
【解析】
(1)加权平均数:若n个数x1,x1,x3,…,xn的权分别是w1,w1,w3,…,wn,则x1w1+x1w1+…+xnwnw1+w1+…+wn叫做这n个数的加权平均数,根据加权平均数的定义计算即可.
(1)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s1来表示,根据方差的计算公式结合平均数进行计算即可.
【详解】
解:(1)甲组平均每人投进个数:(个;
(1)甲组方差:,
乙组的方差为3.1,3.1<3.4
所以从成绩稳定性角度看,乙组表现更好.
本题考查了方差的计算以及方差越小数据越稳定,正确运用方差公式进行计算是解题的关键.
26、(1)四边形是菱形,见解析;(2).
【解析】
(1)先证四边形是平行四边形,再证其一组邻边相等即可;
(2)求出OE的长,再根据菱形的面积公式求解.
【详解】
解:四边形是菱形
四边形是平行四边形
四边形是矩形
平行四边形为菱形
连接交于
四边形是矩形
由可知,四边形是菱形
在中,
本题考查了菱形的判定及其面积,熟练掌握菱形的判定方法及面积公式是解题的关键.
题号
一
二
三
四
五
总分
得分
投进个数
10个
8个
6个
4个
人数
1个
5人
1人
1人
相关试卷
这是一份安徽省来安县联考2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省合肥市瑶海区2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省阜阳市颍南中学2024-2025学年数学九年级第一学期开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。