安徽省长丰县联考2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】
展开这是一份安徽省长丰县联考2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为 ,则成绩最稳定的是( )
A.甲B. 乙C.丙D.丁
2、(4分)将某个图形的各个顶点的横坐标都减去2,纵坐标保持不变,可将该图形( )
A.向左平移2个单位B.向右平移2个单位
C.向上平移2个单位D.向下平移2个单位
3、(4分)用配方法解方程,则方程可变形为
A.B.C.D.
4、(4分)若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是( )
A.k>3B.0<k≤3C.0≤k<3D.0<k<3
5、(4分)如图,点P是正方形内一点,连接并延长,交于点.连接,将绕点顺时针旋转90°至,连结.若,,,则线段的长为( )
A.B.4C.D.
6、(4分)如果,下列不等式中错误的是( )
A.B.C.D.
7、(4分)如图以正方形的一边为边向下作等边三角形,则的度数是( )
A.30°B.25°C.20°D.15°
8、(4分)将点向左平移4个单位长度得到点B,则点B坐标为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知 ,,则=______。
10、(4分)每本书的厚度为,把这些书摞在一起总厚度(单位:随书的本数的变化而变化,请写出关于的函数解析式__,(不用写自变量的取值范围)
11、(4分)元旦期间,张老师开车从汕头到相距150千米的老家探亲,如果油箱里剩余油量(升)与行驶里程 (千米)之间是一次函数关系,其图象如图所示,那么张老师到达老家时,油箱里剩余油量是_______升.
12、(4分)公元9世纪,阿拉伯数学家阿尔•花拉子米在他的名著《代数学》中用图解一元二次方程,他把一元二次方程写成的形式,并将方程左边的看作是由一个正方形(边长为)和两个同样的矩形(一边长为,另一边长为)构成的矩尺形,它的面积为,如图所示。于是只要在这个图形上添加一个小正方形,即可得到一个完整的大正方形,这个大正方形的面积可以表小为:___________ ,整理,得,因为表示边长,所以 ___________.
13、(4分)如图,正方形ABCD中,,点E、F分别在边AD和边BC上,且,动点P、Q分别从A、C两点同时出发,点P自A→F→B方向运动,点Q自C→D→E→C方向运动若点P、Q的运动速度分别为1cm/s,3cm/s,设运动时间为,当A 、C、P、Q四点为顶点的四边形是平行四边形时则t= ________________
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:,在﹣2,0,1,2四个数中选一个合适的代入求值.
15、(8分)已知:如图,在Rt△ABC中,∠C=90°,∠BAC,∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E,F,求证:四边形CEDF是正方形.
16、(8分)为了解某校九年级男生在体能测试的引体向上项目的情况,随机抽取了部分男生引体向上项目的测试成绩,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)本次接受随机抽样调查的男生人数为 ,图①中m的值为 ;
(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
(Ⅲ)若规定引体向上6次及以上(含6次)为该项目良好,根据样本数据,估计该校320名九年级男生中该项目良好的人数.
17、(10分)我们给出如下定义:把对角线互相垂直的四边形叫做“对角线垂直四边形”.
如图,在四边形中,,四边形就是“对角线垂直四边形”.
(1)下列四边形,一定是“对角线垂直四边形”的是_________.
①平行四边形 ②矩形 ③菱形 ④正方形
(2)如图,在“对角线垂直四边形”中,点、、、分别是边、、、的中点,求证:四边形是矩形.
18、(10分)中,AD是的平分线,,垂足为E,作,交直线AE于点设,.
若,,依题意补全图1,并直接写出的度数;
如图2,若是钝角,求的度数用含,的式子表示;
如图3,若,直接写出的度数用含,的式子表示.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)等边三角形的边长为6,则它的高是________
20、(4分)甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如下表,则这四人中水平发挥最稳定的是________.
21、(4分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点,当AB:AD=___________时,四边形MENF是正方形.
22、(4分)任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.
23、(4分)如图,在⊙O中,AC为直径,过点O作OD⊥AB于点E,交⊙O于点D,连接BC,若AB=,ED=,则BC=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组并将解集在数轴上表示出来.
25、(10分)村有肥料200吨,村有肥料300吨,现要将这些肥料全部运往、两仓库.从村往、两仓库运肥料的费用分别为每吨20元和25元;从村往、两仓库运肥料的费用分别为每吨15元和18元;现仓库需要肥料240吨,现仓库需要肥料260吨.
(1)设村运往仓库吨肥料,村运肥料需要的费用为元;村运肥料需要的费用为元.
①写出、与的函数关系式,并求出的取值范围;
②试讨论、两村中,哪个村的运费较少?
(2)考虑到村的经济承受能力,村的运输费用不得超过4830元,设两村的总运费为元,怎样调运可使总运费最少?
26、(12分)某石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:
(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入-总支出);
(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨时,获得的总利润最大?最大利润是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
因为=0.56,=0.60,=0.50,=0.45
所以<<<,由此可得成绩最稳定的为丁.
故选.
点睛:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、A
【解析】
纵坐标不变则图形不会上下移动,横坐标减2,则说明图形向左移动2个单位.
【详解】
由于图形各顶点的横坐标都减去2,
故图形只向左移动2个单位,
故选A.
本题考查了坐标与图形的变化---平移,要知道,上下移动,横坐标不变,左右移动,纵坐标不变.
3、C
【解析】
把常数项移到右边,两边加上一次项系数一半的平方,把方程变化为左边是完全平方的形式.
【详解】
解:,
,
,
.
故选:C.
本题考查的是用配方法解方程,把方程的左边配成完全平方的形式,右边是非负数.
4、A
【解析】
试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像的性质:可知k>0,b>0,在一二三象限;k>0,b<0,在一三四象限;k<0,b>0,在一二四象限;k<0,b<0,在二三四象限.因此由图象经过第二、三、四象限,可判断得3-k<0,-k<0,解之得k>0,k>3,即k>3.
故选A
考点:一次函数的图像与性质
5、D
【解析】
如图作BH⊥AQ于H.首先证明∠BPP′=90°,再证明△PHB是等腰直角三角形,求出PH、BH、AB,再证明△ABH∽△AQB,可得AB2=AH•AQ,由此即可解决问题。
【详解】
解:如图作于.
∵是等腰直角三角形,,
∴,
∵,,
∴,
∴,
∵,
∴,
∴,AH=AP+PH=1+2=3,
在中,,
∵,,
∴,
∴,
∴,
故选:D.
本题考查正方形的性质、旋转变换、勾股定理的逆定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形或相似三角形解决问题,属于中考常考题型.
6、B
【解析】
根据a<b<0,可得ab>0,a+b<0,>0,a-b<0,从而得出答案.
【详解】
A、ab>0,故本选项不符合题意;
B、>1,故本选项符合题意;
C、a+b<0,故本选项不符合题意;
D、a-b<0,故本选项不符合题意.
故选:B.
本题考查了不等式的性质,是基础知识比较简单.
7、D
【解析】
由正方形的性质、等边三角形的性质可得,,再根据,得到,故利用即可求解.
【详解】
解:四边形为正方形,为等边三角形,
∴,
∴.
∵,
∴.
∴.
故选D.
本题考查了正方形的性质及等边三角形的性质;求得并利用其性质做题是解答本题的关键.
8、D
【解析】
【分析】将点的横坐标减4即可.
【详解】将点向左平移4个单位长度得到点B,则点B坐标为,即(-5,2)
故选D
【点睛】本题考核知识点:用坐标表示点的平移. 解题关键点:理解平移的规律.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、60
【解析】
=2ab(a+b),将a+b=3,ab=10,整体带入即可.
【详解】
=2ab(a+b)=2×3×10=60.
本题主要考查利用提公因式法分解因式,整体带入是解决本题的关键.
10、
【解析】
依据这些书摞在一起总厚度y(cm)与书的本数x成正比,即可得到函数解析式.
【详解】
解:每本书的厚度为,
这些书摞在一起总厚度与书的本数的函数解析式为,
故答案为:.
本题主要考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解决问题的关键.
11、20
【解析】
先运用待定系数法求出y与x之间的函数关系式,然后把x=150代入解析式就可以求出y的值,从而得出剩余的油量.
【详解】
解:设y与x之间的函数关系式为y=kx+b,由函数图象,得
,
解得: ,
则y=﹣0.1x+1.
当x=150时,
y=﹣0.1×150+1=20(升).
故答案为20
本题考查了一次函数的应用,正确读懂函数图像,利用待定系数法求函数解析式并代入求值是解题的关键.
12、1 1 1
【解析】
由图可知添加一个边长为1的正方形即可补成一个完整的正方形,由此即可得出答案.
【详解】
解:由图可知添加一个边长为1的正方形即可补成一个面积为36的正方形,
故第一个空和第二个空均应填1,
而大正方形的边长为x+1,
故x+1=6,
x=1,
故答案为:1,1,1.
此题是信息题,首先读懂题意,正确理解题目解题意图,然后抓住解题关键,可以探索得到大正方形的边长为x+1,而大正方形面积为36,由此可以求出结果.
13、3s或6s
【解析】
根据两点速度和运动路径可知,点Q在EC上、点P在AF上或和点P在BC上时、点Q在AD上时,A、C、P、Q四点为顶点的四边形是平行四边形.根据平行四边形性质构造方程即可.
【详解】
由P、Q速度和运动方向可知,当Q运动EC上,P在AF上运动时,
若EQ=FP,A、C、P、Q四点为顶点的四边形是平行四边形
∴3t-7=5-t
∴t=3
当P、Q分别在BC、AD上时
若QD=BP,形A、C、P、Q四点为顶点的四边形是平行四边形
此时Q点已经完成第一周
∴4-[3(t-4)-4]=t-5+1
∴t=6
故答案为:3s或6s.
本题考查了正方形的性质,平行四边形的判定和性质,动点问题的分类讨论和三角形全等有关知识.解答时注意分析两个动点的相对位置关系.
三、解答题(本大题共5个小题,共48分)
14、,1.
【解析】
试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=1代入计算即可求出值.
试题解析:原式=(
=
=2(x+4)
当x=1时,原式=1.
15、证明见解析
【解析】
证明:∵∠C=90°,DE⊥BC于点E,DF⊥AC于点F,
∴四边形DECF为矩形,
∵∠BAC、∠ABC的平分线交于点D,
∴DF=DE,
∴四边形CFDE是正方形
16、 (Ⅰ) 40;25;(Ⅱ)平均数为5.8次;众数为5;中位数为6;(Ⅲ)176名.
【解析】
(Ⅰ)用5次的人数除以5次的人数所占百分比即可得抽查的总人数;求出6次的人数与总人数的比即可得m的值;(Ⅱ)根据平均数、众数和中位数的定义求解即可;(Ⅲ)先求出6次及以上的学生所占的百分比,用320乘以这个百分比即可得答案.
【详解】
(Ⅰ)12÷30%=40(名);
×100%=25%,
∴m=25,
故答案为40;25
(Ⅱ)平均数为:(6×4+12×5+10×6+8×7+4×8)÷40=5.8(次)
∵这组数据中,5出现了12次,出现次数最多,
∴这组数据的众数为5,
∵将这组数据从小到大排列,其中处于中间的两个数都是6,
∴=6,即中位数为6,
(Ⅲ)6次及以上的学生人数为10+8+4=22(名)
∴×320=176(名)
答:估计该校名九年级男生中该项目良好的人数为176名.
本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.
17、(1) ③④;(2)详见解析
【解析】
(1)根据“对角线垂直四边形"的定义求解;
(2)根据三角形中位线的性质得到HG//EF,HE//GF,则可判断四边形EFGH是平行四边形,再证明∠EHG=90°,然后判断四边形EFGH是矩形;
【详解】
(1) 菱形和正方形是“对角线垂直四边形,故③④满足题意.
(2)证明:∵点分别是边、、、的中点,
∴,且;,且;.
∴.
∴四边形是平行四边形.
∵,
∴,
又∵,
∴.
∴.
∴是矩形.
本题考查了中点四边形:任意四边形各边中点的连线所组成的四边形为平行四边形,也考查了三角形中位线性质、菱形、正方形的性质.
18、(1)补图见解析,;(2) ;(3) .
【解析】
(1)先根据三角形内角和定理求出∠BAC和∠CAE,根据角平分线定义求出∠CAD,即可求出答案;
(2)先根据三角形内角和定理求出∠BAC,根据角平分线定义求出∠BAD,根据三角形外角性质求出∠ADC,根据三角形内角和定理求出∠DAE,根据平行线的性质求出即可;
(3)求出∠DAE度数,根据平行线的性质求出即可.
【详解】
解:如图1,
,,
,
是的平分线,
,
,
,
,
,
,
,
;
如图2,
中,,
.
,
是的平分线,
,
,
,
,
,
,
,
;
如图3,
中,,
,
,
是的平分线,
,
,
,
,
,
.
本题考查了三角形内角和定理、三角形角平分线定义、三角形的高、平行线的性质等,熟练掌握相关的性质与定理是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据等边三角形的性质:三线合一,利用勾股定理可求解高.
【详解】
由题意得底边的一半是3,再根据勾股定理,得它的高为=3,
故答案为3.
本题考查的是等边三角形的性质,勾股定理,解答本题的关键是掌握好等腰三角形的三线合一:底边上的高、中线,顶角平分线重合.
20、乙
【解析】
根据方差的定义,方差越小数据越稳定,方差最小的为乙,所以这四人中水平发挥最稳定的是乙.
【详解】
解:由表可知:S乙2=0.015<S丙2=0.025<S甲2=0.035<S丁2=0.1.故四人中乙发挥最稳定.
故答案为:乙.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
21、1:1
【解析】
试题分析:当AB:AD=1:1时,四边形MENF是正方形,
理由是:∵AB:AD=1:1,AM=DM,AB=CD,
∴AB=AM=DM=DC,
∵∠A=∠D=90°,
∴∠ABM=∠AMB=∠DMC=∠DCM=45°,
∴∠BMC=90°,
∵四边形ABCD是矩形,
∴∠ABC=∠DCB=90°,
∴∠MBC=∠MCB=45°,
∴BM=CM,
∵N、E、F分别是BC、BM、CM的中点,
∴BE=CF,ME=MF,NF∥BM,NE∥CM,
∴四边形MENF是平行四边形,
∵ME=MF,∠BMC=90°,
∴四边形MENF是正方形,
即当AB:AD=1:1时,四边形MENF是正方形,
故答案为:1:1.
点睛:本题考查了矩形的性质、正方形的判定、三角形中位线定理等知识,熟练应用正方形的判定方法是解题关键.
22、2
【解析】
把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.
【详解】
∵2=1×2,∴F(2)=,故(1)是正确的;
∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;
∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;
∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).
故答案为2.
本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).
23、
【解析】
先根据垂径定理得出AE=EB=AB,再由勾股定理求出半径和OE的值,最后利用三角形中位线的性质可知BC=2OE,则BC的长度即可求解.
【详解】
∵OD⊥AB,
∴AE=EB=AB= ,
设OA=OD=r,
在Rt△AOE中,
∵AO2=AE2+OE2,ED=
∴r2=()2+(r﹣)2,
∴r=,
∴OE=,
∵OA=OC,AE=EB,
∴BC=2OE= ,
故答案为:.
本题主要考查勾股定理,垂径定理,三角形中位线的性质,掌握勾股定理,垂径定理,三角形中位线的性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、1<x≤1.
【解析】
分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.
【详解】
,
由①得,x≤1,
由②得,x>1,
故不等式组的解集为:1<x≤1.
在数轴上表示为:
.
25、(1)①见解析;②见解析;(2)见解析.
【解析】
(1)①A村运肥料需要的费用=20×运往C仓库肥料吨数+25×运往D仓库肥料吨数;
B村运肥料需要的费用=15×运往C仓库肥料吨数+18×运往D仓库肥料吨数;根据吨数为非负数可得自变量的取值范围;
②比较①中得到的两个函数解析式即可;
(2)总运费=A村的运费+B村的运费,根据B村的运费可得相应的调运方案.
【详解】
解:(1)①;
;
;
②当时 即
两村运费相同;
当时 即
村运费较少;
当时 即
村运费较少;
(2)
即
当取最大值50时,总费用最少
即运吨,运吨;村运吨,运吨.
综合考查了一次函数的应用;根据所给未知数得到运往各个仓库的吨数是解决本题的易错点.
26、(1)与x的函数关系式为=1100x;与x的函数关系式为=1200x-20000;(2)该月生产甲、乙两种塑料分别为300吨和2吨时总利润最大,最大总利润是790000元.
【解析】
(1)因为利润=总收入﹣总支出,由表格可知,y1=(2100﹣800﹣200)x=1100x,y2=(22﹣1100﹣100)x﹣20000=1200x﹣20000;
(2)可设该月生产甲种塑料x吨,则乙种塑料(700﹣x)吨,总利润为W元,建立W与x之间的解析式,又因甲、乙两种塑料均不超过2吨,所以x≤2,700﹣x≤2,这样就可求出x的取值范围,然后再根据函数中y随x的变化规律即可解决问题.
【详解】
详解:(1)依题意得:y1=(2100﹣800﹣200)x=1100x,
y2=(22﹣1100﹣100)x﹣20000=1200x﹣20000;
(2)设该月生产甲种塑料x吨,则乙种塑料(700﹣x)吨,总利润为W元,依题意得:W=1100x+1200(700﹣x)﹣20000=﹣100x+1.
∵,
解得:300≤x≤2.
∵﹣100<0,
∴W随着x的增大而减小,
∴当x=300时,W最大=790000(元).
此时,700﹣x=2(吨).
因此,生产甲、乙塑料分别为300吨和2吨时总利润最大,最大利润为790000元.
本题需仔细分析表格中的数据,建立函数解析式,值得一提的是利用不等式组求自变量的取值范围,然后再利用函数的变化规律求最值这种方法.
题号
一
二
三
四
五
总分
得分
批阅人
选手
甲
乙
丙
丁
众数(环)
9
8
8
10
方差(环2)
0.035
0.015
0.025
0.27
出厂价
成本价
排污处理费
甲种塑料
2100(元/吨)
800(元/吨)
200(元/吨)
乙种塑料
2400(元/吨)
1100(元/吨)
100(元/吨)
另每月还需支付设备管理、维护费20000元
相关试卷
这是一份安徽省怀远县联考2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省滁州全椒县联考2024-2025学年数学九上开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年重庆市(六校联考)九年级数学第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。