年终活动
搜索
    上传资料 赚现金

    安庆市重点中学2025届九年级数学第一学期开学学业水平测试模拟试题【含答案】

    安庆市重点中学2025届九年级数学第一学期开学学业水平测试模拟试题【含答案】第1页
    安庆市重点中学2025届九年级数学第一学期开学学业水平测试模拟试题【含答案】第2页
    安庆市重点中学2025届九年级数学第一学期开学学业水平测试模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安庆市重点中学2025届九年级数学第一学期开学学业水平测试模拟试题【含答案】

    展开

    这是一份安庆市重点中学2025届九年级数学第一学期开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知直线y=2x﹣4,则它与两坐标轴围成的三角形的面积是( )
    A.2B.3C.4D.5
    2、(4分)如图所示,矩形的面积为,它的两条对角线交于点,以、为邻边作平行四边形,平行四边形的对角线交于点,同样以、为邻边作平行四边形,……,依次类推,则平行四边形的面积为( )
    A.B.C.D.
    3、(4分)若点 , 都在反比例函数 的图象上,则与的大小关系是
    A.B.C.D.无法确定
    4、(4分)学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学总成绩是90分,那么他的学期数学成绩( )
    A.85分 B.1.5分 C.88分 D.90分
    5、(4分)如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )
    A.12B.16C.20D.24
    6、(4分)若点P(2m+1,)在第四象限,则m的取值范围是( )
    A.B.C.D.
    7、(4分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD= ( )
    A.4B.3
    C.2D.1
    8、(4分)直线y=3x-1与y=x+3的交点坐标是 ( )
    A.(2,5)B.(1,4)C.(-2,1)D.(-3,0)
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为___.
    10、(4分)某果农 2014 年的年收入为 5 万元,由于党的惠农政策的落实,2016 年年收入增加到 7.2万元,若平均每年的增长率是 x ,则 x =_____.
    11、(4分)如图,点的坐标为,则线段的长度为_________.
    12、(4分)在平面直角坐标系中,已知点,如果以为顶点的四边形是平行四边形,那么满足条件的所有点的坐标为___________.
    13、(4分)在菱形中,,,则菱形的周长是_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)移动营业厅推出两种移动电话计费方式:方案一,月租费用15元/元,本地通话费用0.2元/分钟,方案二,月租费用0元/元,本地通话费用0.3元/分钟.
    (1)以x表示每个月的通话时间(单位:分钟),y表示每个月的电话费用(单位:元),分别表示出两种电话计费方式的函数表达式;
    (2)问当每个月的通话时间为300分钟时,采用那种电话计费方式比较合算?
    15、(8分)已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.
    16、(8分)A、B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离A地的距离S(km)与时间t(h)的关系,结合图像回答下列问题:
    (1)表示乙离开A地的距离与时间关系的图像是________(填 );
    甲的速度是__________km/h;乙的速度是________km/h.
    (2)甲出发后多少时间两人恰好相距5km?
    17、(10分)若x、y都是实数,且y=++,求x2y+xy2的值.
    18、(10分)某商场推出两种优惠方法,甲种方法:购买一个书包赠送一支笔;乙种方法:购买书包和笔一律按九折优惠,书包20元/个,笔5元/支,小明和同学需购买4个书包,笔若干(不少于4支).
    (1)分别写出两种方式购买的费用y(元)与所买笔支数x(支)之间的函数关系式;
    (2)比较购买同样多的笔时,哪种方式更便宜;
    (3)如果商场允许可以任意选择一种优惠方式,也可以同时用两种方式购买,请你就购买4个书包12支笔,设计一种最省钱的购买方式.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)两组数据:3,a,8,5与a,6,b的平均数都是6,若将这两组教据合并为一组,用这组新数据的中位为_______.
    20、(4分)已知、、是反比例函数的图象上的三点,且,则、、的大小关系是________________.
    21、(4分)分解因时:=__________
    22、(4分)如图,有Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为 .
    23、(4分)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=8,AB=4,DE的长=________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知,如图,在平面直角坐标系中,直线分别交轴、轴于点、两点,直线过原点且与直线相交于,点为轴上一动点.
    (1)求点的坐标;
    (2)求出的面积;
    (3)当的值最小时,求此时点的坐标;
    25、(10分)如图,在▱ABCD中,∠ABC的平分线交AD于点E,过点D作BE的平行线交BC于F.
    (1)求证:△ABE≌△CDF;
    (2)若AB=6,BC=8,求DE的长.
    26、(12分)实践活动小组要测量旗杆的高度,现有标杆、皮尺.小明同学站在旗杆一侧,通过观视和其他同学的测量,求出了旗杆的高度,请完成下列问题:
    (1)小明的站点,旗杆的接地点,标杆的接地点,三点应满足什么关系?
    (2)在测量过程中,如果标杆的位置确定,小明应该通过移动位置,直到小明的视点与点 在同直一线上为止;
    (3)他们都测得了哪些数据就能计算出旗杆的高度?请你用小写字母表示这些数据(不允许测量多余的数据);
    (4)请用(3)中的数据,直接表示出旗杆的高度.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    先根据坐标轴的坐标特征分别求出直线y=2x﹣1与两坐标轴的交点坐标,然后根据三角形的面积公式计算.
    【详解】
    令y=0,则2x﹣1=0,解得:x=2,所以直线y=2x﹣1与x轴的交点坐标为(2,0);
    令x=0,则y=﹣1,所以直线y=2x﹣1与y轴的交点坐标为(0,﹣1),所以此直线与两坐标轴围成的三角形面积2×|﹣1|=1.
    故选C.
    本题考查了一次函数上点的坐标特征:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,此直线上的点的坐标满足其解析式.也考查了坐标轴上点的坐标特征以及三角形面积公式.
    2、D
    【解析】
    因为矩形的对边和平行四边形的对边互相平行,且矩形的对角线和平行四边形的对角线都互相平分,所以上下两平行线间的距离相等,平行四边形的面积等于底×高,所以第一个平行四边形是矩形的一半,第二个平行四边形是第一个平行四边形的一半依次可推下去.
    【详解】
    解:根据题意分析可得:
    ∵四边形ABCD是矩形,
    ∴O1A=O1C,
    ∵四边形ABC1O1是平行四边形,,
    ∴O1C1∥AB,
    ∴BE=BC,
    ∵S矩形ABCD=AB•BC,S▱ABC1O1=AB•BE=AB•BC,
    ∴面积为原来的,
    同理:每个平行四边形均为上一个面积的,
    故平行四边形ABC5O5的面积为:,
    故选:D.
    此题综合考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
    3、A
    【解析】
    把所给点的横纵坐标代入反比例函数的解析式,求出、的值,比较大小即可.
    【详解】
    点在反比例函数的图象上,,
    点在反比例函数的图象上,,
    .
    故选:.
    本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积等于比例系数.
    4、C
    【解析】
    根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.
    【详解】
    小明这学期总评成绩=85×40%+90×60%=2.
    故选:C.
    本题考查的是加权平均数的求法.解题的关键是根据期中、期末两次成绩所占的比例,列出算式,是一道基础题.
    5、D
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.
    【详解】
    、分别是、的中点,
    是的中位线,

    菱形的周长.
    故选:.
    本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
    6、C
    【解析】
    点P(2m+1,)在第四象限,故2m+1>0,<0,解不等式可得.
    【详解】
    ∵点P(2m+1,)在第四象限,
    ∴2m+1>0,<0,
    解得:.
    故选:C
    考核知识点:点的坐标和象限.理解点的坐标符号与限项关系.
    7、C
    【解析】
    作PE⊥OB于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠BCP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.
    【详解】
    作PE⊥OB于E,
    ∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,
    ∴PE=PD,
    ∵PC∥OA,
    ∴∠BCP=∠AOB=2∠BOP=30°
    ∴在Rt△PCE中,PE=PC=×4=2,
    故选C.
    本题考查角平分线的性质、含30度角的直角三角形和三角形的外角性质,解题的关键是掌握角平分线的性质、含30度角的直角三角形和三角形的外角性质.
    8、A
    【解析】
    根据求函数图象交点的坐标,转化为求两个一次函数构成的方程组解的问题,因此联立两函数的解析式所得方程组,即为两个函数图象的交点坐标.
    【详解】
    联立两函数的解析式,得
    解得,
    则直线y=3x-1与y=x+3的交点坐标是,
    故选:A.
    考查了两条直线交点坐标和二元一次方程组解的关系,二元一次方程组的求解,注意函数的图象和性质与代数关系的转化,数形结合思想的应用.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据平行四边形的性质及两点之间线段最短进行作答.
    【详解】
    由题知,四边形ABCD是平行四边形,所以BH=DH.要求HD+HE最小,即BH+HE最小,所以,连接B、E,得到最小值HD+HE=BE.过B点作BGCE交于点G,再结合题意,得到GE=3,BG=1,由勾股定理得,BE=.所以,HD+HE最小值为.
    本题考查了平行四边形的性质及两点之间线段最短,熟练掌握平行四边形的性质及两点之间线段最短是本题解题关键.
    10、20%.
    【解析】
    本题的等量关系是2014年的收入×(1+增长率)2=2016年的收入,据此列出方程,再求解.
    【详解】
    解:根据题意,得,
    即.
    解得:,(不合题意,舍去)
    故答案为20%.
    本题考查了一元二次方程应用中求平均变化率的知识.解这类题的一般思路和方法是:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的一元二次方程方程为a(1±x)2=b.
    11、
    【解析】
    根据勾股定理计算即可.
    【详解】
    解:∵点A坐标为(2,2),
    ∴AO=,
    故答案为:.
    本题考查了勾股定理的运用和点到坐标轴的距离:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
    12、
    【解析】
    需要分类讨论:以AB为该平行四边形的边和对角线两种情况.
    【详解】
    解:如图,①当AB为该平行四边形的边时,AB=OC,
    ∵点A(1,1),B(-1,1),O(0,0)
    ∴点C坐标(-2,0)或(2,0)
    ②当AB为该平行四边形的对角线时,C(0,2).
    故答案是:(-2,0)或(2,0)或(0,2).
    本题考查了平行四边形的性质和坐标与图形性质.解答本题关键要注意分两种情况进行求解.
    13、
    【解析】
    根据菱形的性质,得到AO=3,BO=4,AC⊥BD,由勾股定理求出AB,即可求出周长.
    【详解】
    解:∵四边形是菱形,
    ∴,,AC⊥BD,
    ∴△ABO是直角三角形,
    由勾股定理,得

    ∴菱形的周长是:;
    故答案为:20.
    本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质进行求解.
    三、解答题(本大题共5个小题,共48分)
    14、(1)方案一中通话费用关于时间的函数关系式为y=15+0.2x,(x≥0);方案二中通话费用关于时间的函数关系式为y=0.3x,(x≥0);(2)采用方案一电话计费方式比较合算.
    【解析】试题分析:(1)根据“方案一费用=月租+通话时间×每分钟通话费用,方案二的费用=通话时间×每分钟通话费用”可列出函数解析式;
    (2)根据(1)中函数解析式,分别计算出x=300时的函数值,即可得出答案.
    试题解析:(1)根据题意知,
    方案一中通话费用关于时间的函数关系式为y=15+0.2x,(x≥0);
    方案二中通话费用关于时间的函数关系式为y=0.3x,(x≥0).
    (2)当x=300时,方案一的费用y=15+0.2×300=75(元),
    方案二的费用y=0.3×300=90(元),∴采用方案一电话计费方式比较合算.
    点睛:本题主要考查一次函数的应用,根据方案中所描述的计费方式得出总费用的相等关系是解题的关键.
    15、AB=5 周长20 面积24
    【解析】根据菱形的对角线互相垂直平分的性质,运用勾股定理即可求得菱形的边长,从而得到
    菱形的周长,再根据菱形的面积等于对角线乘积的一半即可计算出菱形的面积。
    16、(1); 30; 20;(2)甲出发后1.3h或者1.5h时,甲乙相距5km.
    【解析】
    解:(1)乙离开A地的距离越来越远,图像是; 甲的速度60÷2=30;乙的速度60÷(3.5-0.5)=20;
    (2)由图可求出,
    由得;由得
    答:甲出发后1.3h或者1.5h时,甲乙相距5km.
    考点:一次函数的应用
    17、1+1.
    【解析】
    根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.
    【详解】
    由题意得:,
    解得:x=2,
    则y=,
    x2y+xy2=xy(x+y)=2(2+)=1+1.
    此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
    18、(1)y甲=5x+60,y乙=4.5x+72;(2)当购买笔数大于24支时,乙种方式便宜;当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以;当购买笔数大于4支而小于24支时,甲种方式便宜;(3)用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.
    【解析】分析:(1)根据购买的费用等于书包的费用+笔的费用就可以得出结论;
    (2)由(1)的解析式,分情 y甲>y乙时,况y甲=y乙时和y甲<y乙时分别建立不等式和方程讨论就可以求出结论;
    (3)由条件分析可以得出用一种方式购买选择甲商场求出费用,若两种方法都用 设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用为y,再根据一次函数的性质就可以求出结论.
    详解:(1)由题意,得:
    y甲=20×4+5(x﹣4)=5x+60,y乙=90%(20×4+5x)=4.5x+72;
    (2)由(1)可知 当 y甲>y乙时
    5x+60>4.5x+72,解得:x>24,即当购买笔数大于24支时,乙种方式便宜.
    当 y甲=y乙时,5x+60=4.5x+72
    解得:x=24,即当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以.
    当 y甲<y乙时,5x+60<4.5x+72,解得:x<24,即当购买笔数大于4支而小于24支时,甲种方式便宜;
    (3)用一种方法购买4个书包,12支笔时,由12<24,则选甲种方式 需支出
    y=20×4+8×5=120(元)
    若两种方法都用 设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用
    y=20 x+90%〔20(4﹣x)+5(12﹣x)〕(0<x≤4)
    y=﹣2.5 x+126
    由k=﹣2.5<0则y随x增大而减小,即当x=4时 y最小=116(元)
    综上所述:用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.
    点睛:本题考查了一次函数的解析式的运用,分类讨论的运用及不等式和方程的解法的运用,一次函数的性质的运用,解答时先表示出两种购买方式的解析式是解答第二问的关键,解答第三问灵活运用一次函数的性质是难点.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求中位数即可.
    【详解】
    ∵两组数据:3,a,8,5与a,1,b的平均数都是1,
    ∴,
    解得,
    若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,1,8,8,8,
    一共7个数,第四个数是1,所以这组数据的中位数是1.
    故答案为1.
    本题考查平均数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.
    20、y2

    相关试卷

    2025届岳阳市重点中学数学九年级第一学期开学学业水平测试试题【含答案】:

    这是一份2025届岳阳市重点中学数学九年级第一学期开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届淮北市重点中学九年级数学第一学期开学学业水平测试试题【含答案】:

    这是一份2025届淮北市重点中学九年级数学第一学期开学学业水平测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届保山市重点中学数学九年级第一学期开学学业水平测试试题【含答案】:

    这是一份2025届保山市重点中学数学九年级第一学期开学学业水平测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map