安庆市重点中学2025届九年级数学第一学期开学学业水平测试模拟试题【含答案】
展开
这是一份安庆市重点中学2025届九年级数学第一学期开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知直线y=2x﹣4,则它与两坐标轴围成的三角形的面积是( )
A.2B.3C.4D.5
2、(4分)如图所示,矩形的面积为,它的两条对角线交于点,以、为邻边作平行四边形,平行四边形的对角线交于点,同样以、为邻边作平行四边形,……,依次类推,则平行四边形的面积为( )
A.B.C.D.
3、(4分)若点 , 都在反比例函数 的图象上,则与的大小关系是
A.B.C.D.无法确定
4、(4分)学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学总成绩是90分,那么他的学期数学成绩( )
A.85分 B.1.5分 C.88分 D.90分
5、(4分)如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )
A.12B.16C.20D.24
6、(4分)若点P(2m+1,)在第四象限,则m的取值范围是( )
A.B.C.D.
7、(4分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD= ( )
A.4B.3
C.2D.1
8、(4分)直线y=3x-1与y=x+3的交点坐标是 ( )
A.(2,5)B.(1,4)C.(-2,1)D.(-3,0)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为___.
10、(4分)某果农 2014 年的年收入为 5 万元,由于党的惠农政策的落实,2016 年年收入增加到 7.2万元,若平均每年的增长率是 x ,则 x =_____.
11、(4分)如图,点的坐标为,则线段的长度为_________.
12、(4分)在平面直角坐标系中,已知点,如果以为顶点的四边形是平行四边形,那么满足条件的所有点的坐标为___________.
13、(4分)在菱形中,,,则菱形的周长是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)移动营业厅推出两种移动电话计费方式:方案一,月租费用15元/元,本地通话费用0.2元/分钟,方案二,月租费用0元/元,本地通话费用0.3元/分钟.
(1)以x表示每个月的通话时间(单位:分钟),y表示每个月的电话费用(单位:元),分别表示出两种电话计费方式的函数表达式;
(2)问当每个月的通话时间为300分钟时,采用那种电话计费方式比较合算?
15、(8分)已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.
16、(8分)A、B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离A地的距离S(km)与时间t(h)的关系,结合图像回答下列问题:
(1)表示乙离开A地的距离与时间关系的图像是________(填 );
甲的速度是__________km/h;乙的速度是________km/h.
(2)甲出发后多少时间两人恰好相距5km?
17、(10分)若x、y都是实数,且y=++,求x2y+xy2的值.
18、(10分)某商场推出两种优惠方法,甲种方法:购买一个书包赠送一支笔;乙种方法:购买书包和笔一律按九折优惠,书包20元/个,笔5元/支,小明和同学需购买4个书包,笔若干(不少于4支).
(1)分别写出两种方式购买的费用y(元)与所买笔支数x(支)之间的函数关系式;
(2)比较购买同样多的笔时,哪种方式更便宜;
(3)如果商场允许可以任意选择一种优惠方式,也可以同时用两种方式购买,请你就购买4个书包12支笔,设计一种最省钱的购买方式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)两组数据:3,a,8,5与a,6,b的平均数都是6,若将这两组教据合并为一组,用这组新数据的中位为_______.
20、(4分)已知、、是反比例函数的图象上的三点,且,则、、的大小关系是________________.
21、(4分)分解因时:=__________
22、(4分)如图,有Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为 .
23、(4分)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=8,AB=4,DE的长=________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知,如图,在平面直角坐标系中,直线分别交轴、轴于点、两点,直线过原点且与直线相交于,点为轴上一动点.
(1)求点的坐标;
(2)求出的面积;
(3)当的值最小时,求此时点的坐标;
25、(10分)如图,在▱ABCD中,∠ABC的平分线交AD于点E,过点D作BE的平行线交BC于F.
(1)求证:△ABE≌△CDF;
(2)若AB=6,BC=8,求DE的长.
26、(12分)实践活动小组要测量旗杆的高度,现有标杆、皮尺.小明同学站在旗杆一侧,通过观视和其他同学的测量,求出了旗杆的高度,请完成下列问题:
(1)小明的站点,旗杆的接地点,标杆的接地点,三点应满足什么关系?
(2)在测量过程中,如果标杆的位置确定,小明应该通过移动位置,直到小明的视点与点 在同直一线上为止;
(3)他们都测得了哪些数据就能计算出旗杆的高度?请你用小写字母表示这些数据(不允许测量多余的数据);
(4)请用(3)中的数据,直接表示出旗杆的高度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先根据坐标轴的坐标特征分别求出直线y=2x﹣1与两坐标轴的交点坐标,然后根据三角形的面积公式计算.
【详解】
令y=0,则2x﹣1=0,解得:x=2,所以直线y=2x﹣1与x轴的交点坐标为(2,0);
令x=0,则y=﹣1,所以直线y=2x﹣1与y轴的交点坐标为(0,﹣1),所以此直线与两坐标轴围成的三角形面积2×|﹣1|=1.
故选C.
本题考查了一次函数上点的坐标特征:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,此直线上的点的坐标满足其解析式.也考查了坐标轴上点的坐标特征以及三角形面积公式.
2、D
【解析】
因为矩形的对边和平行四边形的对边互相平行,且矩形的对角线和平行四边形的对角线都互相平分,所以上下两平行线间的距离相等,平行四边形的面积等于底×高,所以第一个平行四边形是矩形的一半,第二个平行四边形是第一个平行四边形的一半依次可推下去.
【详解】
解:根据题意分析可得:
∵四边形ABCD是矩形,
∴O1A=O1C,
∵四边形ABC1O1是平行四边形,,
∴O1C1∥AB,
∴BE=BC,
∵S矩形ABCD=AB•BC,S▱ABC1O1=AB•BE=AB•BC,
∴面积为原来的,
同理:每个平行四边形均为上一个面积的,
故平行四边形ABC5O5的面积为:,
故选:D.
此题综合考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
3、A
【解析】
把所给点的横纵坐标代入反比例函数的解析式,求出、的值,比较大小即可.
【详解】
点在反比例函数的图象上,,
点在反比例函数的图象上,,
.
故选:.
本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积等于比例系数.
4、C
【解析】
根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.
【详解】
小明这学期总评成绩=85×40%+90×60%=2.
故选:C.
本题考查的是加权平均数的求法.解题的关键是根据期中、期末两次成绩所占的比例,列出算式,是一道基础题.
5、D
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.
【详解】
、分别是、的中点,
是的中位线,
,
菱形的周长.
故选:.
本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
6、C
【解析】
点P(2m+1,)在第四象限,故2m+1>0,<0,解不等式可得.
【详解】
∵点P(2m+1,)在第四象限,
∴2m+1>0,<0,
解得:.
故选:C
考核知识点:点的坐标和象限.理解点的坐标符号与限项关系.
7、C
【解析】
作PE⊥OB于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠BCP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.
【详解】
作PE⊥OB于E,
∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,
∴PE=PD,
∵PC∥OA,
∴∠BCP=∠AOB=2∠BOP=30°
∴在Rt△PCE中,PE=PC=×4=2,
故选C.
本题考查角平分线的性质、含30度角的直角三角形和三角形的外角性质,解题的关键是掌握角平分线的性质、含30度角的直角三角形和三角形的外角性质.
8、A
【解析】
根据求函数图象交点的坐标,转化为求两个一次函数构成的方程组解的问题,因此联立两函数的解析式所得方程组,即为两个函数图象的交点坐标.
【详解】
联立两函数的解析式,得
解得,
则直线y=3x-1与y=x+3的交点坐标是,
故选:A.
考查了两条直线交点坐标和二元一次方程组解的关系,二元一次方程组的求解,注意函数的图象和性质与代数关系的转化,数形结合思想的应用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据平行四边形的性质及两点之间线段最短进行作答.
【详解】
由题知,四边形ABCD是平行四边形,所以BH=DH.要求HD+HE最小,即BH+HE最小,所以,连接B、E,得到最小值HD+HE=BE.过B点作BGCE交于点G,再结合题意,得到GE=3,BG=1,由勾股定理得,BE=.所以,HD+HE最小值为.
本题考查了平行四边形的性质及两点之间线段最短,熟练掌握平行四边形的性质及两点之间线段最短是本题解题关键.
10、20%.
【解析】
本题的等量关系是2014年的收入×(1+增长率)2=2016年的收入,据此列出方程,再求解.
【详解】
解:根据题意,得,
即.
解得:,(不合题意,舍去)
故答案为20%.
本题考查了一元二次方程应用中求平均变化率的知识.解这类题的一般思路和方法是:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的一元二次方程方程为a(1±x)2=b.
11、
【解析】
根据勾股定理计算即可.
【详解】
解:∵点A坐标为(2,2),
∴AO=,
故答案为:.
本题考查了勾股定理的运用和点到坐标轴的距离:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
12、
【解析】
需要分类讨论:以AB为该平行四边形的边和对角线两种情况.
【详解】
解:如图,①当AB为该平行四边形的边时,AB=OC,
∵点A(1,1),B(-1,1),O(0,0)
∴点C坐标(-2,0)或(2,0)
②当AB为该平行四边形的对角线时,C(0,2).
故答案是:(-2,0)或(2,0)或(0,2).
本题考查了平行四边形的性质和坐标与图形性质.解答本题关键要注意分两种情况进行求解.
13、
【解析】
根据菱形的性质,得到AO=3,BO=4,AC⊥BD,由勾股定理求出AB,即可求出周长.
【详解】
解:∵四边形是菱形,
∴,,AC⊥BD,
∴△ABO是直角三角形,
由勾股定理,得
,
∴菱形的周长是:;
故答案为:20.
本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质进行求解.
三、解答题(本大题共5个小题,共48分)
14、(1)方案一中通话费用关于时间的函数关系式为y=15+0.2x,(x≥0);方案二中通话费用关于时间的函数关系式为y=0.3x,(x≥0);(2)采用方案一电话计费方式比较合算.
【解析】试题分析:(1)根据“方案一费用=月租+通话时间×每分钟通话费用,方案二的费用=通话时间×每分钟通话费用”可列出函数解析式;
(2)根据(1)中函数解析式,分别计算出x=300时的函数值,即可得出答案.
试题解析:(1)根据题意知,
方案一中通话费用关于时间的函数关系式为y=15+0.2x,(x≥0);
方案二中通话费用关于时间的函数关系式为y=0.3x,(x≥0).
(2)当x=300时,方案一的费用y=15+0.2×300=75(元),
方案二的费用y=0.3×300=90(元),∴采用方案一电话计费方式比较合算.
点睛:本题主要考查一次函数的应用,根据方案中所描述的计费方式得出总费用的相等关系是解题的关键.
15、AB=5 周长20 面积24
【解析】根据菱形的对角线互相垂直平分的性质,运用勾股定理即可求得菱形的边长,从而得到
菱形的周长,再根据菱形的面积等于对角线乘积的一半即可计算出菱形的面积。
16、(1); 30; 20;(2)甲出发后1.3h或者1.5h时,甲乙相距5km.
【解析】
解:(1)乙离开A地的距离越来越远,图像是; 甲的速度60÷2=30;乙的速度60÷(3.5-0.5)=20;
(2)由图可求出,
由得;由得
答:甲出发后1.3h或者1.5h时,甲乙相距5km.
考点:一次函数的应用
17、1+1.
【解析】
根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.
【详解】
由题意得:,
解得:x=2,
则y=,
x2y+xy2=xy(x+y)=2(2+)=1+1.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
18、(1)y甲=5x+60,y乙=4.5x+72;(2)当购买笔数大于24支时,乙种方式便宜;当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以;当购买笔数大于4支而小于24支时,甲种方式便宜;(3)用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.
【解析】分析:(1)根据购买的费用等于书包的费用+笔的费用就可以得出结论;
(2)由(1)的解析式,分情 y甲>y乙时,况y甲=y乙时和y甲<y乙时分别建立不等式和方程讨论就可以求出结论;
(3)由条件分析可以得出用一种方式购买选择甲商场求出费用,若两种方法都用 设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用为y,再根据一次函数的性质就可以求出结论.
详解:(1)由题意,得:
y甲=20×4+5(x﹣4)=5x+60,y乙=90%(20×4+5x)=4.5x+72;
(2)由(1)可知 当 y甲>y乙时
5x+60>4.5x+72,解得:x>24,即当购买笔数大于24支时,乙种方式便宜.
当 y甲=y乙时,5x+60=4.5x+72
解得:x=24,即当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以.
当 y甲<y乙时,5x+60<4.5x+72,解得:x<24,即当购买笔数大于4支而小于24支时,甲种方式便宜;
(3)用一种方法购买4个书包,12支笔时,由12<24,则选甲种方式 需支出
y=20×4+8×5=120(元)
若两种方法都用 设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用
y=20 x+90%〔20(4﹣x)+5(12﹣x)〕(0<x≤4)
y=﹣2.5 x+126
由k=﹣2.5<0则y随x增大而减小,即当x=4时 y最小=116(元)
综上所述:用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.
点睛:本题考查了一次函数的解析式的运用,分类讨论的运用及不等式和方程的解法的运用,一次函数的性质的运用,解答时先表示出两种购买方式的解析式是解答第二问的关键,解答第三问灵活运用一次函数的性质是难点.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求中位数即可.
【详解】
∵两组数据:3,a,8,5与a,1,b的平均数都是1,
∴,
解得,
若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,1,8,8,8,
一共7个数,第四个数是1,所以这组数据的中位数是1.
故答案为1.
本题考查平均数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.
20、y2
相关试卷
这是一份2025届岳阳市重点中学数学九年级第一学期开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届淮北市重点中学九年级数学第一学期开学学业水平测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届保山市重点中学数学九年级第一学期开学学业水平测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。