搜索
    上传资料 赚现金
    英语朗读宝

    北京师范大附属实验中学2025届九上数学开学质量跟踪监视模拟试题【含答案】

    北京师范大附属实验中学2025届九上数学开学质量跟踪监视模拟试题【含答案】第1页
    北京师范大附属实验中学2025届九上数学开学质量跟踪监视模拟试题【含答案】第2页
    北京师范大附属实验中学2025届九上数学开学质量跟踪监视模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京师范大附属实验中学2025届九上数学开学质量跟踪监视模拟试题【含答案】

    展开

    这是一份北京师范大附属实验中学2025届九上数学开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)一元二次方程的根为( )
    A.0B.3C.0或﹣3D.0或3
    2、(4分)一元二次方程的解是( )
    A.B.C.,D.
    3、(4分)下列根式中,不是最简二次根式的是( )
    A.B.C.D.
    4、(4分)如图,这组数据的组数与组距分别为( )
    A.5,9B.6,9
    C.5,10D.6,10
    5、(4分)一组数据8,7,6,7,6,5,4,5,8,6的众数是( )
    A.8B.7C.6D.5
    6、(4分)已知等腰三角形的底角为65°,则其顶角为( )
    A.50°B.65°C.115°D.50°或65°
    7、(4分)将直线y=2x-3向右平移2个单位。再向上平移2个单位后,得到直线y=kx+b.则下列关于直线y=kx+b的说法正确的是( )
    A.与y轴交于(0,-5)B.与x轴交于(2,0)
    C.y随x的增大而减小D.经过第一、二、四象限
    8、(4分)一组数据、、、、、的众数是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)今年我市有5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个调查中样本容量是______.
    10、(4分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为,,,点P在BC(不与点B、C重合)上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为______.

    11、(4分)若三角形的一边长为,面积为,则这条边上的高为______.
    12、(4分)如图,四边形ABCD是正方形,△EBC是等边三角形,则∠AED的度数为_________.
    13、(4分)某市出租车的收费标准是:千米以内(包括千米)收费元,超过千米,每增加千米加收元,则当路程是(千米)()时,车费(元)与路程(千米)之间的关系式(需化简)为:________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)计算:(1—)×+
    15、(8分)益群精品店以转件21元的价格购进一批商品,该商品可以白行定价,若每件商B品位价a元,可卖出(350-10a)件,但物价局限定每件商品的利润率不得超过20%,商店计划要盈利400元,求每件商品应定价多少元?
    16、(8分)如图是由25个边长为1的小正方形组成的网格,请在图中画出以为斜边的2个面积不同的直角三角形.(要求:所画三角形顶点都在格点上)
    17、(10分)如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠1.求证:四边形ABCD是矩形.
    18、(10分)下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.
    作法:如图
    ①以点B为圆心,AC长为半径作弧;
    ②以点C为圆心,AB长为半径作弧;
    ③两弧交于点D,A,D在BC同侧;
    ④连接AD,CD.
    所以四边形ABCD是矩形,
    根据小明设计的尺规作图过程,
    (1)使用直尺和圆规,补全图形;(保留作图痕迹)
    (2)完成下面的证明.
    证明:链接BD.
    ∵AB=________,AC=__________,BC=BC
    ∴ΔABC≌ΔDCB
    ∴∠ABC=∠DCB=90°
    ∴AB∥CD.
    ∴四边形ABCD是平行四边形
    ∵∠ABC=90°
    ∴四边形ABCD是矩形.(_______________)(填推理的依据)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在中,对角线与相交于点,在上有一点,连接,过点作的垂线和的延长线交于点,连接,,,若,,则_________.
    20、(4分)如图,△ABO的面积为3,且AO=AB,反比例函数y= 的图象经过点A,则k的值为___.
    21、(4分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,机器人移动第2018次即停止,则的面积是______.
    22、(4分)直线与平行,且经过(2,1),则+=____________.
    23、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E为BC边的中点,连接OE,若AB=4,则线段OE的长为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AC于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.
    (1)①求证:四边形BFDE是菱形;②求∠EBF的度数.
    (2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的数量关系,并说明理由;
    (3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.
    25、(10分)先化简,再求值:,其中x是的整数部分.
    26、(12分)如图,已知中,,点以每秒1个单位的速度从向运动,同时点以每秒2个单位的速度从向方向运动,到达点后,点也停止运动,设点运动的时间为秒.
    (1)求点停止运动时,的长;
    (2) 两点在运动过程中,点是点关于直线的对称点,是否存在时间,使四边形为菱形?若存在,求出此时的值;若不存在,请说明理由.
    (3) 两点在运动过程中,求使与相似的时间的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
    【详解】
    方程x(x+3)=0,
    可得x=0或x+3=0,
    解得:x=0,x=−3.
    故选C.
    此题考查解一元二次方程-因式分解法,解题关键在于掌握其定义.
    2、C
    【解析】
    试题解析:,
    或,
    .
    故选C.
    3、C
    【解析】
    根据最简二次根式的概念即可求出答案.
    【详解】
    C.原式=2,故C不是最简二次根式,
    故选:C.
    此题考查最简二次根式,解题关键在于掌握其概念.
    4、D
    【解析】
    通过观察频率分布直方图,发现一共分为6组,每一组的最大值和最小值的差都是10,做出判断.
    【详解】
    解:频率分布直方图中共有6个直条,故组数是6,每组的最大值和最小值的差都是10,因此组距是10,
    故选:D.
    考查频率分布直方图的制作方法,明确组距、组数的意义是绘制频率分布直方图的两个基本的步骤.
    5、C
    【解析】
    根据众数的含义:在一组数据中出现次数最多的数叫做这组数据的众数.
    【详解】
    在这组数据中6出现3次,次数最多,所以众数为6,故选:C.
    本题考查众数的定义,学生们熟练掌握即可解答.
    6、A
    【解析】
    等腰三角形的一个底角是65°,则另一个底角也是65°,据此用三角形内角和减去两个底角的度数,就是顶角的度数.
    【详解】
    解:180°65°65°=50°,
    ∴它的顶角是50°.
    故选:A.
    此题考查等腰三角形的性质和三角形内角和定理的灵活应用.
    7、A
    【解析】
    利用一次函数图象的平移规律,左加右减,上加下减,得出即可.
    【详解】
    直线y=2x-3向右平移2个单位得y=2(x-2)-3,即y=2x-7;
    再向上平移2个单位得y=2x-7+2,即y=2x-5,
    A.当x=0时,y=-5,
    与y轴交于(0,-5),
    本项正确,
    B.当y=0时,x=,
    与x轴交于(,0),
    本项错误;
    C.2>0
    y随x的增大而增大,
    本项错误;
    D. 2>0,
    直线经过第一、三象限,
    -50)的图象上,
    ∴k=xy=OC⋅AC=1.
    故答案为:1.
    此题考查反比例函数系数k的几何意义,解题关键在于作辅助线.
    21、504m2
    【解析】
    由OA =2n知OA = +1=1009,据此得出A A =1009-1=1008,据此利用三角形的面积公式计算可得.
    【详解】
    由题意知OA =2n,
    ∵2018÷4=504…2,
    ∴OA = +1=1009,
    ∴A A =1009-1=1008,
    则△O A A的面积是×1×1008=504m2
    此题考查规律型:数字变换,解题关键在于找到规律
    22、6
    【解析】
    ∵直线y=kx+b与y=−5x+1平行,
    ∴k=−5,
    ∵直线y=kx+b过(2,1),
    ∴−10+b=1,
    解得:b=11.
    ∴k+b=-5+11=6
    23、2
    【解析】
    证出OE是△ABC的中位线,由三角形中位线定理即可求得答案.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴OA=OC;
    又∵点E是BC的中点,
    ∴OE是△ABC的中位线,
    ∴OE=AB=2,
    故答案为:2.
    此题考查了平行四边形的性质以及三角形中位线的定理;熟练掌握平行四边形的性质和三角形中位线定理是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)①证明见解析;②;(2);(3).
    【解析】
    (1)①由,推出,,推出四边形是平行四边形,再证明即可.
    ②先证明,推出,延长即可解决问题.
    (2).只要证明是等边三角形即可.
    (3)结论:.如图3中,将绕点逆时针旋转得到,先证明,再证明是直角三角形即可解决问题.
    【详解】
    (1)①证明:如图1中,
    四边形是矩形,
    ,,

    在和中,


    ,,
    四边形是平行四边形,
    ,,

    四边形是菱形.
    ②平分,





    ,,


    (2)结论:.
    理由:如图2中,延长到,使得,连接.
    四边形是菱形,,
    ,,

    在和中,


    ,,



    是等边三角形,

    在和中,


    ,,,




    是等边三角形,
    在中,,,


    (3)结论:.
    理由:如图3中,将绕点逆时针旋转得到,

    四点共圆,
    ,,



    在和中,



    ,,

    ,,

    本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.
    25、,
    【解析】
    原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x的值代入计算即可求出值.
    【详解】
    解:原式=
    ∵x是的整数部分,∴x=2.
    当x=2时, .
    本题考查分式的化简求值,熟练掌握运算法则是解题关键.
    26、(1)(2)(3)或
    【解析】
    (1)求出点Q的从B到A的运动时间,再求出AP的长,利用勾股定理即可解决问题.
    (2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.根据DQ=CK,构建方程即可解决问题.
    (3)分两种情形:如图3-1中,当∠APQ=90°时,如图3-2中,当∠AQP=90°时,分别构建方程即可解决问题.
    【详解】
    (1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,
    ∴AB==10,
    点Q运动到点A时,t==5,
    ∴AP=5,PC=1,
    在Rt△PBC中,PB=.
    (2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.
    ∵四边形PQCE是菱形,
    ∴PC⊥EQ,PK=KC,
    ∵∠QKC=∠QDC=∠DCK=90°,
    ∴四边形QDCK是矩形,
    ∴DQ=CK,
    ∴,
    解得t=.
    ∴t=s时,四边形PQCE是菱形.
    (3)如图2中,当∠APQ=90°时,
    ∵∠APQ=∠C=90°,
    ∴PQ∥BC,
    ∴,
    ∴,
    ∴.
    如图3中,当∠AQP=90°时,
    ∵△AQP∽△ACB,
    ∴,
    ∴,
    ∴,
    综上所述,或s时,△APQ是直角三角形.
    本题属于相似形综合题,考查了菱形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.
    题号





    总分
    得分

    相关试卷

    北京教育院附属中学2024年数学九上开学质量跟踪监视模拟试题【含答案】:

    这是一份北京教育院附属中学2024年数学九上开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    北京大附中2025届数学九上开学质量跟踪监视模拟试题【含答案】:

    这是一份北京大附中2025届数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年新疆自治区北京大附属中学数学九上开学质量跟踪监视模拟试题【含答案】:

    这是一份2024年新疆自治区北京大附属中学数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map