北京师范大亚太实验学校2024-2025学年数学九上开学达标检测试题【含答案】
展开
这是一份北京师范大亚太实验学校2024-2025学年数学九上开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为( )
A.(﹣2,1)B.(﹣1,2)C.(,﹣1)D.(﹣,1)
2、(4分)下列成语描述的事件为随机事件的是( )
A.水涨船高 B.守株待兔 C.水中捞月 D.缘木求鱼
3、(4分)若一个多边形从一个顶点出发的对角线共有3条,则这个多边形的内角和为( )
A.360°B.540°C.720°D.1080°
4、(4分)已知正比例函数()的函数值y随x的增大而减小,则一次函数的图像经过的象限为 ( )
A.二、三、四 B.一、二、四 C.一、三、四 D.一、二、三
5、(4分)如图所示,在平行直角坐标系中,▱OMNP的顶点P坐标是(3,4),顶点M坐标是(4,0)、则顶点N的坐标是( )
A.N(7,4)B.N(8,4)C.N(7,3)D.N(8,3)
6、(4分)以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )
A.2,3,4B., , C.1, ,2D.7,8,9
7、(4分)点A、B、C、D在同一平面内,从AB∥CD,AB=CD,AD∥BC这三条件中任选两个能使四边形ABCD是平行四边形的选法有( )
A.1种B.2种C.3种D.以上都不对
8、(4分)下列各组长度的线段中,可以组成直角三角形的是( )
A.1,2,3B.1,,3C.5,6,7D.5,12,13
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若,则的值为______.
10、(4分)一列数,,,,其中,(为不小于的整数),则___.
11、(4分)如图,AB∥CD,则∠1+∠3—∠2的度数等于 __________.
12、(4分)如图,△A1B1A2,△A2B2A3,△A3B3A4,...,△AnBnAn+1都是等腰直角三角形,其中点A1、A2、…、An,在x轴上,点B1、B2、…Bn在直线y=x上,已知OA1=1,则OA2019的长是_____.
13、(4分)学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6,7,8,9,9,9,9,10,10,10,12,这组数据的众数和中位数分别是______________.
三、解答题(本大题共5个小题,共48分)
14、(12分)八年级(3)班同学为了解2020年某小区家庭1月份天然气使用情况,随机调查了该小区部分家庭,并将调查数据进行如下整理:
(1)求出a,b的值,并把频数分布直方图补充完整;
(2)求月均用气量不超过30的家庭数占被调查家庭总数的百分比;
(3)若该小区有600户家庭,根据调查数据估计,该小区月均用气量超过40的家庭大约有多少户?
15、(8分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程
解:设x2﹣4x=y,
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)该同学第二步到第三步运用了因式分解的 (填序号).
A.提取公因式 B.平方差公式
C.两数和的完全平方公式 D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后? .(填“是”或“否”)如果否,直接写出最后的结果 .
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
16、(8分)问题:探究函数y=|x|﹣2的图象与性质.
小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.
下面是小华的探究过程,请补充完整:
(1)在函数y=|x|﹣2中,自变量x可以是任意实数;
(2)如表是y与x的几组对应值
①m等于多少;
②若A(n,2018),B(2020,2018)为该函数图象上不同的两点,则n等于多少;
(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并根据描出的点画出该函数的图象;根据函数图象可得:该函数的最小值为多少;该函数图象与x轴围成的几何图形的面积等于多少;
(4)已知直线y1=x﹣与函数y=|x|﹣2的图象交于C,D两点,当y1≥y时,试确定x的取值范围.
17、(10分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)
18、(10分)在数学拓展课上,老师让同学们探讨特殊四边形的做法:
如图,先作线段,作射线(为锐角),过作射线平行于,再作和的平分线分别交和于点和,连接,则四边形为菱形;
(1)你认为该作法正确吗?请说明理由.
(2)若,并且四边形的面积为,在上取一点,使得.请问图中存在这样的点吗?若存在,则求出的长;若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)小明参加岗位应聘中,专业知识、工作经验、仪表形象三项的得分分别为:分、分、分.若这三项的重要性之比为,则他最终得分是_________分.
20、(4分)一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.
21、(4分)小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是______人.
22、(4分)已知反比例函数的图像过点、,则__________.
23、(4分)如图,菱形ABCD中,点O为对角线AC的三等分点且AO=2OC,连接OB,OD,OB=OC=OD,已知AC=3,那么菱形的边长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)(江苏省泰州市海陵区2018年中考适应性训练数学试题) 如图,直线AB:y=−x−b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴的负半轴于点C,且OB∶OC=3∶1.
(1)求点B的坐标;
(2)求直线BC的函数关系式;
(3)若点P(m,2)在△ABC的内部,求m的取值范围.
25、(10分)如图,中,是边上一点,,,,点,分别是,边上的动点,且始终保持.
(1)求的长;
(2)若四边形为平行四边形时,求的周长;
(3)将沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,求线段的长.
26、(12分)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,易证得△AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=,继而求得答案.
【详解】
解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,
则∠ODC=∠AEO=90°,
∴∠OCD+∠COD=90°,
∵四边形OABC是正方形,
∴OC=OA,∠AOC=90°,
∴∠COD+∠AOE=90°,
∴∠OCD=∠AOE,
在△AOE和△OCD中,
,
∴△AOE≌△OCD(AAS),
∴CD=OE=1,OD=AE=,
∴点C的坐标为:(-,1).
故选:D.
本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE≌△OCD是解题的关键.
2、B
【解析】试题解析:水涨船高是必然事件,A不正确;
守株待兔是随机事件,B正确;
水中捞月是不可能事件,C不正确
缘木求鱼是不可能事件,D不正确;
故选B.
考点:随机事件.
3、C
【解析】
先得出这个多边形的边数,再根据多边形的内角和公式即可得.
【详解】
从一个顶点出发的对角线共有3条
这个多边形是一个六边形
则这个多边形的内角和为
故选:C.
本题考查了多边形的内角和公式,正确求出多边形的边数是解题关键.
4、A
【解析】
试题分析:∵正比例函数()的函数值y随x的增大而减小,∴k<0,∴一次函数的图像经过二、三、四象限.故选A.
考点:一次函数的性质.
5、A
【解析】
此题可过P作PE⊥OM,过点N作NF⊥OM,根据勾股定理求出OP的长度,则N点坐标便不难求出.
【详解】
过P作PE⊥OM,过点N作NF⊥OM,
∵顶点P的坐标是(3,4),
∴OE=3,PE=4,
∵四边形ABCD是平行四边形,
∴OE=MF=3,
∵4+3=7,
∴点N的坐标为(7,4).
故选A.
此题考查了平行四边形的性质,根据平行四边形的性质和点P的坐标,作出辅助线是解决本题的突破口.
6、C
【解析】
A、22+32≠42 ,故不是直角三角形,A不符合题意;B、()2+()2≠()2 ,故不是直角三角形,B不符合题意;C、12+( )2=22 ,故是直角三角形,C符合题意;D、72+82≠92 ,故不是直角三角形,D不符合题意;
故选C.
7、B
【解析】
分别从3个条件中选取2个,共3种情况:若选AB∥CD,AB=CD,若选AB∥CD,AD∥BC,若选AB=CD,AD∥BC,逐一利用平行四边形的判定方法验证即可.
【详解】
若选AB∥CD,AB=CD,
∵AB∥CD,AB=CD,
∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形);
若选AB∥CD,AD∥BC,
∵AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形);
若选AB=CD,AD∥BC,不能说明四边形ABCD是平行四边形;
故选:B.
本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
8、D
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.
【详解】
A、12+22≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;
B、12+()2≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;
C、52+62≠72,根据勾股定理的逆定理不是直角三角形,故此选项错误;
D、52+122=132,根据勾股定理的逆定理是直角三角形,故此选项正确.
故选:D.
此题考查勾股定理的逆定理,解题关键在于在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
由可得,化简即可得到,再计算,即可求得=.
【详解】
∵,
∴,
∴,
∴,
∴=.
故答案为:.
本题考查了完全平方公式的变形应用,正确求得是解决问题的关键.
10、
【解析】
把a1,a2,a3代入代数式计算,找出规律,根据规律计算.
【详解】
a1=,
,
,
……,
2019÷3=673,
∴a2019=-1,
故答案为:-1.
本题考查的是规律型:数字的变化类问题,正确找出数字的变化规律是解题的关键.
11、180°
【解析】
解:∵AB∥CD
∴∠1=∠EFD
∵∠2+∠EFC=∠3
∠EFD=180°-∠EFC
∴∠1+∠3—∠2=180°
故答案为:180°
12、1
【解析】
根据一次函数的性质可得∠B1OA1=45°,然后求出△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,然后根据等腰直角三角形斜边上的高等于斜边的一半求出OA3,同理求出OA4,然后根据变化规律写出即可.
【详解】
解:∵直线为y=x,
∴∠B1OA1=45°,
∵△A2B2A3,
∴B2A2⊥x轴,∠B2A3A2=45°,
∴△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,
∴OA3=2A2B2=2OA2=2×2=4,
同理可求OA4=2OA3=2×4=23,
…,
所以,OA2019=1.
故答案为:1.
本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,熟记性质并确定出等腰直角三角形是解题的关键.
13、9;9
【解析】
【分析】根据中位数和众数定义可以分析出结果.
【详解】这组数据中9出现次数最多,故众数是9;按顺序最中间是9,所以中位数是9.
故答案为9;9
【点睛】本题考核知识点:众数,中位数.解题关键点:理解众数,中位数的定义.
三、解答题(本大题共5个小题,共48分)
14、(1)6,,图见解析;(2);(3)1.
【解析】
(1)先求出随机调查的家庭总户数,再根据“频数频率总数”可求出a的值,根据“频率频数总数”可求出b的值,然后补全频数分布直方图即可;
(2)根据总户数和频数分布表中“月均用气量不超过的家庭数”即可得;
(3)先求出“小区月均用气量超过的家庭”的占比,再乘以600即可得.
【详解】
(1)随机调查的家庭总户数为(户)
则
补全频率分布直方图如下所示:
(2)月均用气量不超过的家庭数为(户)
则
答:月均用气量不超过30的家庭数占被调查家庭总数的百分比为;
(3)小区月均用气量超过的家庭占比为
则(户)
答:该小区月均用气量超过40的家庭大约有1户.
本题考查了频数分布表和频数分布直方图,掌握理解频数分布表和频数分布直方图是解题关键.
15、(1)C;(2)否,(x﹣2)1;(3)(x2﹣2x)(x2﹣2x+2)+1=(x﹣1)1.
【解析】
(1)根据分解因式的过程直接得出答案;
(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;
(3)将看作整体进而分解因式即可.
【详解】
(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;
故选:C;
(2)这个结果没有分解到最后,
原式=(x2﹣1x+1)2=(x﹣2)1;
故答案为:否,(x﹣2)1;
(3)设为x2﹣2x=t,
则原式=t(t+2)+1
=t2+2t+1
=(t+1)2
=(x2﹣2x+1)2
=(x﹣1)1.
此题主要考查了公式法分解因式,熟练利用完全平方公式分解因式是解题关键,注意分解因式要彻底.
16、(2)①m=1;②﹣2020;(1)该函数的最小值为﹣2;该函数图象与x轴围成的几何图形的面积是4;(4)当y1≥y时x的取值范围是﹣1≤x≤1.
【解析】
(2)①把x=1代入y=|x|﹣2,即可求出m;
②把y=2018代入y=|x|﹣2,即可求出n;
(1)画出该函数的图象即可求解;
(4)在同一平面直角坐标系中画出函数y1=x﹣与函数y=|x|﹣2的图象,根据图象即可求出y1≥y时x的取值范围.
【详解】
(2)①把x=1代入y=|x|﹣2,得m=1;
②把y=2018代入y=|x|﹣2,得2018=|x|﹣2,
解得x=﹣2020或2020,
∵A(n,2018),B(2020,2018)为该函数图象上不同的两点,
∴n=﹣2020;
(1)该函数的图象如图,
由图可得,该函数的最小值为﹣2;该函数图象与x轴围成的几何图形的面积是×4×2=4;
(4)在同一平面直角坐标系中画出函数y1=x﹣与函数y=|x|﹣2的图象,
由图形可知,当y1≥y时x的取值范围是﹣1≤x≤1.
故答案为:(2)①m=1;②﹣2020;(1)该函数的最小值为﹣2;该函数图象与x轴围成的几何图形的面积是4;(4)当y1≥y时x的取值范围是﹣1≤x≤1.
本题考查了一次函数的图象与性质,一次函数图象上点的坐标特征.正确画出函数的图象,利用数形结合思想是解题的关键.
17、见解析
【解析】
试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
试题解析:
探究:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,
∴△BCE≌△DCG(SAS),
∴BE=DG.
应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,
∴S△CDE= ,
∴S△ECG=S△CDE+S△CDG=10
∴S菱形CEFG=2S△ECG=20.
18、(1)作法正确(2)或
【解析】
(1)根据作法可以推出,又因为,所以四边形是平行四边形,又,所以四边形是菱形,因此作法正确;
(2)作,由面积公式可求出,由菱形的性质可得AD=AB=4,用勾股定理可得,由锐角三角函数得,所以是正三角形.再根据菱形对角线互相垂直的性质,利用勾股定理解得或.
【详解】
(1)作法正确.理由如下:
∵
∴
∵平分,平分
∴
∴
∴
又∵
∴四边形是平行四边形
∵
∴四边形是菱形.
故作法正确.
(2)存在.
如图,作
∵,
∴ 且
∴由勾股定理得
∴由锐角三角函数得
∴是正三角形
∴
∵ ∴
∴或
本题考查了菱形的性质和判定,勾股定理和锐角三角函数,是一个四边形的综合题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、15.1
【解析】
根据加权平均数的计算公式列出算式,再进行计算即可得出答案.
【详解】
根据题意得:(分),
答:他最终得分是15.1分.
故答案为:15.1.
本题考查了加权平均数的概念.在本题中专业知识、工作经验、仪表形象的权重不同,因而不能简单地平均,而应将各人的各项成绩乘以权之后才能求出最后的得分.
20、3.1
【解析】
根据众数的定义先求出x的值,然后再根据方差的公式进行计算即可得.
【详解】
解:已知一组数据1,x,4,6,7的众数是6,说明x=6,
则平均数=(1+6+4+6+7)÷5=15÷5=5,
则这组数据的方差==3.1,
故答案为3.1.
本题考查了众数、方差等,熟练掌握众数的定义、方差的计算公式是解题的关键.
21、1
【解析】
将这7个数按大小顺序排列,找到最中间的数即为中位数.
【详解】
解:这组数据从大到小为:27,1,1,1,42,42,46,
故这组数据的中位数1.
故答案为1.
此题考查了折线统计图及中位数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算,难度一般.
22、
【解析】
根据反比例函数的增减性,结合点A和点B的横坐标的大小,即可得到答案.
【详解】
∵m2≥0,
∴m2+2>m2+1,
∵反比例函数y=,k>0,
∴当x>0时,y随着x的增大而减小,
∴y1>y2,
故答案为:>.
本题考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的增减性是解题的关键.
23、.
【解析】
如图,连接BD交AC于E,由四边形ABCD是菱形,推出AC⊥BD,AE=EC,在Rt△EOD中,利用勾股定理求出DE,在Rt△ADE中利用勾股定理求出AD即可.
【详解】
如图,连接BD交AC于E.
∵四边形ABCD是菱形,
∴AC⊥BD,AE=EC,
∵OA=2OC,AC=3,
∴CO=DO=2EO=1,AE=,
∴EO=,DE=EB=,
∴AD=.
故答案为.
本题考查菱形的性质、勾股定理等知识,解题的关键是灵活应用勾股定理解决问题.
二、解答题(本大题共3个小题,共30分)
24、(1)(0,6);(2)y=3x+6;(3)−
相关试卷
这是一份2024-2025学年福建师范大第二附属中学数学九上开学复习检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年北京市精华学校九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年北京丰台九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。