北京市海淀区十一学校2025届数学九年级第一学期开学监测试题【含答案】
展开
这是一份北京市海淀区十一学校2025届数学九年级第一学期开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若一次函数的图像与直线平行,且过点,则此一次函数的解析式为( )
A.B.C.D.
2、(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结若,,则的度数为
A.B.C.D.
3、(4分)八年级(1)班要在甲、乙、丙、丁四名同学中挑选一名同学去参加数学竟赛,四名同学在5次数学测试中成绩的平均数及方差如下表所示
如果选出一名成绩较好且状态稳定的同学去参赛,那么应选( )
A.甲B.乙C.丙D.丁
4、(4分)当时,计算( )
A.B.C.D.
5、(4分)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只有0.0000007(毫米),数据0.0000007用科学记数法表示为( )
A.B.C.D.
6、(4分)下列函数中,是的正比例函数的是( )
A.B.C.D.
7、(4分)如图是一张月历表,在此月历表上用一个长方形任意圈出个数(如,,,),如果圈出的四个数中最小数与最大数的积为,那么这四个数的和为( )
A.B.C.D.
8、(4分)在某市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程(米)与时间(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是( )
A.这次比赛的全程是500米
B.乙队先到达终点
C.比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快
D.乙与甲相遇时乙的速度是375米/分钟
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.
10、(4分)在一个不透明的盒子中装有2个白球和3个红球这些球除了颜色外无其他差别现从这个盒子中任意摸出1个球,那么摸到1个红球的概率是_________.
11、(4分)已知直线y=﹣与x轴、y轴分别交于点A、B,在坐标轴上找点P,使△ABP为等腰三角形,则点P的个数为_____个.
12、(4分)若有意义,则x 的取值范围是 .
13、(4分)在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),若线段AB与x轴有交点,则m的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在菱形ABCD中,对角线AC与BD相交于O点,AB=5,AC=6,过D点作DE//AC交BC的延长线于E点
(1)求△BDE的周长
(2)点P为线段BC上的点,连接PO并延长交AD于点Q,求证:BP=DQ
15、(8分)如图,是的中线,是线段上一点(不与点重合).交于点,,连接.
(1)如图1,当点与重合时,求证:四边形是平行四边形;
(2)如图2,当点不与重合时,(1)中的结论还成立吗?请说明理由.
(3)如图3,延长交于点,若,且,求的度数.
16、(8分)已知一次函数的图象经过点(3,4)与(-3,-8).
(1)求这个一次函数的解析式;
(2)求关于的不等式的解集.
17、(10分)A城有肥料400t,B城有肥料600t,现要把这些肥料全部运往C、D两乡,所需运费如下表所示:
现C乡需要肥料480t,D乡需要肥料520t.
(1)设从A城运往C乡肥料x吨,总运费为y元;
①求B城运往C、D两乡的肥料分别为多少吨?(用含x的式子表示).
②写出y关于x的函数解析式,并求出最少总运费.
(2)由于更换车型,使A城运往C乡的运费每吨减少m元(0<m<6),这时怎样调运才能使总运费最少?
18、(10分)如图,为等边三角形,,、相交于点,于点,,.
(1)求证:;
(2)求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将一次函数y=﹣2x﹣1的图象向上平移3个单位,则平移后所得图象的解析式是_____.
20、(4分)如图,平行四边形中,为的中点,连接,若平行四边形的面积为,则的面积为____.
21、(4分)如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为______.
22、(4分)菱形ABCD的周长为24,∠ABC=60°,以AB为腰在菱形外作底角为45°的等腰△ABE,连结AC,CE,则△ACE的面积为___________.
23、(4分)张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形为菱形,已知,.
(1)求点的坐标;
(2)求经过点,两点的一次函数的解析式.
(3)求菱形的面积.
25、(10分)如图,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.
(1)求证:∠FBC=∠CDF;
(2)作点C关于直线DE的对称点G,连接CG,FG,猜想线段DF,BF,CG之间的数量关系,并证明你的结论.
26、(12分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据平行直线的解析式的k值相等求出k,然后把点P(-1,2)的坐标代入一次函数解析式计算即可得解.
【详解】
一次函数y=kx+b的图象与直线y=-x+1平行,
∴k=-1,
∵一次函数过点(8,2),
∴2=-8+b
解得b=1,
∴一次函数解析式为y=-x+1.
故选:D.
考查了两直线平行的问题,根据平行直线的解析式的k值相等求出一次函数解析式的k值是解题的关键.
2、B
【解析】
【分析】直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.
【详解】,,
,
▱ABCD的对角线AC与BD相交于点O,E是边CD的中点,
是的中位线,
,
,
故选B.
【点睛】本题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是的中位线是解题关键.
3、B
【解析】
根据平均数和方差的意义解答.
【详解】
解:从平均数看,成绩最好的是乙、丙同学,
从方差看,乙方差小,发挥最稳定,
所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选乙,
故选:B.
本题考查平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
4、C
【解析】
先确定a的取值范围,再逐项化简,然后合并即可.
【详解】
∵,ab3≥0,
∴a≤0.
∴==.
故选C.
本题考查了二次根式的加减运算,应先把各个二次根式化成最简二次根式,然后再合并同类二次根式即可. 同类二次根式的合并方法是把系数相加减,被开方式和根号不变.
5、C
【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 1<1时,n为负数.
【详解】
0.000 000 1=1×10-1.
故选C.
此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
6、A
【解析】
根据正比例函数的定义:一般地,形如是常数,的函数叫做正比例函数,其中叫做比例系数可选出答案.
【详解】
解:、是的正比例函数,故此选项正确;
、是一次函数,故此选项错误;
、是反比例函数,故此选项错误;
、是一次函数,故此选项错误;
故选:.
本题主要考查了正比例函数定义,关键是掌握正比例函数是形如是常数,的函数.
7、C
【解析】
根据题意分别表示出最小数与最大数,进而利用最大数与最小数的积为153得出等式,计算求出答案.
【详解】
设最小数为,则另外三个数为,,,根据题意可列方程,解得,(不符合题意,舍去),,,,,四个数分别为,,16,.,四个数的和为.
本题考查一元二次方程的应用,解题的关键是读懂题意,得到方程.
8、C
【解析】
由横纵坐标可判断A、B,观察图象比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面可判断C,由图象得乙队在1.1至1.9分钟的路程为300米,可判断D.
【详解】
由纵坐标看出,这次龙舟赛的全程是500m,故选项A正确;
由横坐标可以看出,乙队先到达终点,故选项B正确;
∵比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面,
∴乙队的速度比甲队的速度慢,故C选项错误;
∵由图象可知,乙队在1.1分钟后开始加速,加速的总路程是500-200=300(米),加速的时间是1.9-1.1=0.8(分钟),
∴乙与甲相遇时,乙的速度是300÷0.8=375(米/分钟),故D选项正确.
故选C.
本题主要考查一次函数的图象与实际应用,观察图象理解图象中每个特殊点的实际意义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先找出中心对称图形有平行四边形、正方形和圆3个,再直接利用概率公式求解即可求得答案.
【详解】
解:张完全相同的卡片中中心对称图形有平行四边形、正方形和圆3个,
随机摸出1张,卡片上的图形是中心对称图形的概率是,
故答案为:.
本题主要考查了中心对称图形和概率公式.用到的知识点为:概率所求情况数与总情况数之比.
10、
【解析】
用红球的个数除以总球的个数即可得出答案.
【详解】
解:∵不透明的盒子中装有2个白球和3个红球,共有5个球,
∴这个盒子中任意模出1个球、那么摸到1个红球的概率是;
故答案为:.
本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
11、1
【解析】
根据题意可以画出相应的图形,然后写出各种情况下的等腰三角形,即可解答本题.
【详解】
如图所示,
当BA=BP1时,△ABP1是等腰三角形,
当BA=BP2时,△ABP2是等腰三角形,
当AB=AP3时,△ABP3是等腰三角形,
当AB=AP4时,△ABP4是等腰三角形,
当BA=BP5时,△ABP5是等腰三角形,
当P1A=P1B时,△ABP1是等腰三角形,
故答案为1.
本题考查一次函数图象上点的坐标特征、等腰三角形的判定,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答,注意一定要考虑全面.
12、x≥8
【解析】
略
13、﹣2≤m≤1
【解析】
由点的坐标特征得出线段AB∥y轴,当直线y=1经过点A时,得出m=1;当直线y=1经过点B时,得出m=﹣2;即可得出答案.
【详解】
解:∵点A、B的坐标分别为(3,m)、(3,m+2),
∴线段AB∥y轴,
当直线y=1经过点A时,则m=1,
当直线y=1经过点B时,m+2=1,则m=﹣2;
∴直线y=1与线段AB有交点,则m的取值范围为﹣2≤m≤1;
故答案为﹣2≤m≤1.
本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
三、解答题(本大题共5个小题,共48分)
14、(1)1;(2)证明见解析.
【解析】
分析:(1)因为菱形的对角线互相垂直及互相平分就可以在Rt△AOB中利用勾股定理求出OB,然后利用平行四边形的判定及性质就可以求出△BDE的周长;
(2)容易证明△BOP≌△DOQ,再利用它们对应边相等就可以了.
详解:(1)解:∵四边形ABCD是菱形,
∴AB=BC=CD=AD=5,AC⊥BD,OB=OD,OA=OC=3,
∴OB==4,BD=2OB=8,
∵AD∥CE,AC∥DE,
∴四边形ACED是平行四边形,
∴CE=AD=BC=5,DE=AC=6,
∴△BDE的周长是:BD+BC+CE+DE=8+10+6=1.
(2)证明:∵四边形ABCD是菱形,
∴AD∥BC,
∴∠QDO=∠PBO,
∵在△DOQ和△BOP中
,
∴△DOQ≌△BOP(ASA),
∴BP=DQ.
点睛:本题考查了菱形的性质,平行四边形的判定与性质,勾股定理,也考查了全等三角形的判定及性质;这是一道综合性的题,熟悉每个知识点是解决问题的关键.
15、(1)见解析;(2)成立,见解析;(3).
【解析】
(1)先判断出∠ECD=∠ADB,进而判断出△ABD≌△EDC,即可得出结论;
(2)先判断出四边形DMGE是平行四边形,借助(1)的结论即可得出结论;
(3)先判断出MI∥BH,MI=BH,进而利用直角三角形的性质即可得出结论.
【详解】
解:(1)∵,
∴,
∵,
∴,
∵是的中线,且与重合,
∴,
∴,
∴,
∵,
∴四边形是平行四边形;
(2)结论成立,理由如下:如图2,过点作交于,
∵,
∴四边形是平行四边形,
∴,且,
由(1)知,,,
∴,,
∴四边形是平行四边形;
(3)如图3取线段的中点,连接,
∵,
∴是的中位线,
∴,,
∵,且,
∴,,
∴.
此题是四边形综合题,主要考查了三角形的中线,中位线的性质和判定,平行四边形的平行和性质,直角三角形的性质,正确作出辅助线是解绑的关键.
16、(1)y=2x−2;(2)x⩽1.
【解析】
(1)将两点代入,运用待定系数法求解;
(2)把y=6代入y=2x-2解得x=1,然后根据一次函数y随x的增大而增大,进而得到关于x的不等式kx+b≤6的解集是x≤1.
【详解】
(1)∵一次函数y=kx+b的图象经过点(3,1)与(−3,−8),
∴ ,
解得
∴函数解析式为:y=2x−2;
(2)∵k=2>0,
∴y随x的增大而增大,
把y=6代入y=2x−2解得,x=1,
∴当x⩽1时,y⩽6,
故不等式kx+b⩽6的解集为x⩽1.
此题考查待定系数法求一次函数解析式,一次函数与一元一次不等式,解题关键在于掌握一次函数的性质.
17、(1)①B城运往C:(480-x)吨;B城运往D:(120+x)吨②当x=0时,y最小值1;(2)当0<m<4时,A运往D处400t,B运往C处480t,运往D处120t,总运费最少;m=4时,三种方案都可以,总运费都一样;4<m<6时,A运往C处400t,B运往C处80t,运往D处520t,总运费最少;
【解析】
(1)①根据题意列代数式即可;
②根据:运费=运输吨数×运输费用,得一次函数解析式,然后根据一次函数的性质解答即可;
(2)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,并得结论.
【详解】
解:(1)①B城运往C:(480-x)吨;B城运往D:(120+x)吨;
②根据题意得:y=20x+25(400-x)+15(480-x)+24(120+x),
即y=4x+1(0≤x≤400),
∵k=4>0,
∴y随x的增大而增大,
当x=0时,y最小值1;
(2)设从A城运往C乡肥料x吨,总费用为y,则:
y=(20-m)x+25(400-x)+15(480-x)+24(120+x),
即y=(4-m)x+1.
①当4-m<0即4<a<6时,
y随x的增大而减小,
∴当x=400时y最少.
调运方案:A运往C处400t,B运往C处80t,运往D处520t;
②4-m=0即m=4时,无论x取多少y的值一样,符合要求的方案都可以;
③当4-m>0,即0<m<4时,y随x的增大而增大,
∴当x=0时,y最小.
调运方案:A运往D处400t,B运往C处480t,运往D处120t.
本题考查了一次函数的应用.根据题意列出一次函数解析式是关键.注意到(2)需分类讨论,.
18、 (1)见解析;(2)7.
【解析】
(1)根据等边三角形的三条边都相等可得AB=CA,每一个角都是60°可得,∠BAE=∠ACD=60°,然后利用“边角边”证明△ABE和△CAD全等,根据全等三角形对应边相等证明即可;
(2)根据全等三角形对应角相等可得∠CAD=∠ABE,然后求出∠BPQ=60°,再根据直角三角形两锐角互余求出∠PBQ=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出BP=2PQ,再根据AD=BE=BP+PE代入数据进行计算即可得解.
【详解】
(1)证明:为等边三角形,
,;
在和中,
,
,
;
(2),
,
;
,
,
,
,
在中,,
又,
.
本题考查了等边三角形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半,熟记性质并求出BP=2PQ是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=﹣1x+1
【解析】
根据平移法则上加下减可得出解析式.
【详解】
由题意得:平移后的解析式为:y=﹣1x﹣1+3=﹣1x+1.
故答案为:y=﹣1x+1.
本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.
20、6
【解析】
如图,连接AC.首先证明△ABC≌△CDA,可得S△ABC=S△ADC=×24=12(cm2),由AE=DE,可得S△CDE=S△ADC=6;
【详解】
解:如图,连接.
∵四边形是平行四边形,
∴,,
∵,
∴,
∴,
∵,
∴,
故答案为6
本题考查平行四边形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
21、1.
【解析】
解:依题意知,BG=AF=DE=8,EF=FG=2,∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB===1.故答案为1.
点睛:此题考查勾股定理的证明,解题的关键是得到直角△ABF的两直角边的长度.
22、9或.
【解析】
分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.
【详解】
解:①如图1,延长EA交DC于点F,
∵菱形ABCD的周长为24,
∴AB=BC=6,
∵∠ABC=60°,
∴三角形ABC是等边三角形,
∴∠BAC=60°,
当EA⊥BA时,△ABE是等腰直角三角形,
∴AE=AB=AC=6,∠EAC=90°+60°=150°,
∴∠FAC=30°,
∵∠ACD=60°,
∴∠AFC=90°,
∴CF=AC=3,
则△ACE的面积为:AE×CF=×6×3=9;
②如图2,过点A作AF⊥EC于点F,
由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,
∵AB=BE=BC=6,
∴∠BEC=∠BCE=15°,
∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,
∴AF=AE,AF=CF=AC=,
∵AB=BE=6,
∴AE=,
∴EF=,
∴EC=EF+FC=
则△ACE的面积为:EC×AF=.
故答案为:9或.
本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.
23、1.
【解析】
∵100,80,x,1,1,这组数据的众数与平均数相等,
∴这组数据的众数只能是1,否则,x=80或x=100时,出现两个众数,无法与平均数相等.
∴(100+80+x+1+1)÷5=1,解得,x=1.
∵当x=1时,数据为80,1,1,1,100,
∴中位数是1.
二、解答题(本大题共3个小题,共30分)
24、(1)C(0,);(2);(3)1
【解析】
(1)利用勾股定理求出AB,再利用菱形的性质求出OC的长即可.
(2)求出C,D两点坐标,利用待定系数法即可解决问题.
(3)利用菱形的面积公式计算即可.
【详解】
解:(1)∵A(3,0),B(0,4),
∴OA=3,OB=4,
∴AB=5,
∵四边形ABCD是菱形,
∴BC=AB=5,
∴OC=1,
∴C(0,-1);
(2)由题意,四边形为菱形,C(0,-1),
∴D(3,-5),
设直线CD的解析式为y=kx+b,
,
解得:,
∴直线CD的解析式为.
(3)∵,,
∴S菱形ABCD=5×3=1.
本题考查一次函数的性质,菱形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
25、 (1)见解析,(2)BF=CG+DF.理由见解析.
【解析】
(1)由题意可得到∠FBC+∠E=90°,∠CDF+∠E=90°,然后依据余角的性质求解即可;
(2)在线段FB上截取FM,使得FM=FD,然后可证明△BDM∽△CDF,由相似三角形的性质可得到BM=FC,然后证明△CFG为等腰直角三角形,从而可得到CG=CF,然后可得到问题的答案.
【详解】
.解:(1)∵ABCD为正方形,
∴∠DCE=90°.
∴∠CDF+∠E=90°,
又∵BF⊥DE,
∴∠FBC+∠E=90°,
∴∠FBC=∠CDF
(2)如图所示:在线段FB上截取FM,使得FM=FD.
∵∠BDC=∠MDF=45°,
∴∠BDM=∠CDF,
∵ ,
∴△BDM∽△CDF,
∴ ,∠DBM=∠DCF,
∴BM=CF,
∴∠CFE=∠FCD+∠CDF=∠DBM+∠BDM=∠DMF=45°,
∴∠EFG=∠EFC=45°,
∴∠CFG=90°,
∵CF=FG,
∴CG=CF,
∴BM=CG,
∴BF=BM+FM=CG+DF.
本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.
26、BE∥DF,BE=DF,理由见解析
【解析】
证明△BCE≌△DAF,得到BE=DF,∠3=∠1,问题得解.
【详解】
解:猜想:BE∥DF,BE=DF.
证明:如图1
∵四边形ABCD是平行四边形,
∴BC=AD,∠1=∠2,
又∵CE=AF,
∴△BCE≌△DAF.
∴BE=DF,∠3=∠1.
∴BE∥DF.
此题考查了平行四边形的性质、全等三角形的判定与性质.难度适中,注意掌握数形结合思想的应用.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
平均数
85
93
93
86
方差
3
3
3.5
3.7
城市
A城
B城
运往C乡运费(元/t)
20
15
运往D乡运费(元/t)
25
24
相关试卷
这是一份北京市海淀区十一学校2024年数学九上开学复习检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北京市海淀区师达中学2025届九年级数学第一学期开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届北京市北京市十一学校九年级数学第一学期开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。