北京市怀柔区九级2024-2025学年九上数学开学经典模拟试题【含答案】
展开
这是一份北京市怀柔区九级2024-2025学年九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,四象限B.第一,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若一元二次方程有实数根,则实数的取值范围是( )
A.B.C.D.
2、(4分)一个多边形的内角和是7200,则这个多边形的边数是( )
A.2B.4C.6D.8
3、(4分)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过
A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限
4、(4分)若,则的值为( )
A.B.C.D.
5、(4分)已知a>b,若c是任意实数,则下列不等式中总是成立的是()
A.a-c>b-cB.a+c<b+cC.ac>bcD.ac<bc
6、(4分)如图,是我国古代数学家在为《周髀算经》作注解时给出的“弦图”,给出“弦图”的这位数学家是( )
A.毕达哥拉斯B.祖冲之C.华罗庚D.赵爽
7、(4分)若函数有意义,则
A. B. C. D.
8、(4分)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1.则下列结论:①m<0,n>0;②直线y=nx+4n一定经过点(-4,0);③m与n满足m=1n-1;④当x>-1时,nx+4n>-x+m,其中正确结论的个数是( )
A.1个B.1个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .
10、(4分)如图,在平面直角坐标系xOy中,有两点A(2,4),B(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B'.若B'的坐标为(2,0),则点A'的坐标为_____.
11、(4分)关于一元二次方程有两个相等的实数根,则的值是__________.
12、(4分)的整数部分是a,小数部分是b,则________.
13、(4分)如图,每个小正方形的边长为1,在△ABC中,点A,B,C均在格点上,点D为AB的中点,则线段CD的长为____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形中,,,为上一点,将沿翻折至,与相交于点,与相交于点,且.
(1)求证:;
(2)求的长度.
15、(8分)在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S矩形ABCD=3S△PAB,则PA+PB的最小值为_____.
16、(8分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.
(1)断⊿BEC的形状,并说明理由;
(2)判断四边形EFPH是什么特殊四边形?并证明你的判断.
17、(10分)计算: (1); (2).
18、(10分)如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF=90°,延长EF交BC的延长线于点G;
(1)求证:△ABE∽△EGB;
(2)若AB=4,求CG的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,如果一次函数与反比例函数的图象交于,两点,那么不等式的解为________.
20、(4分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处若,则为______ .
21、(4分)如图,点C为线段AB上一点,且CB=1,分别以AC、BC为边,在AB的同一侧作等边△ACD和等边△CBE,连接DE,AE,∠CDE=30°,则△ADE的面积为_____.
22、(4分)函数,当时,_____;当1<<2时,随的增大而_____(填写“增大”或“减小”).
23、(4分)在平面直角坐标系xOy中,直线与x,y轴分别交于点A,B,若将该直线向右平移5个单位,线段AB扫过区域的边界恰好为菱形,则k的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)四川苍溪小王家今年红心猕猴桃喜获丰收,采摘上市20天全部销售完,小王对销售情况进行跟踪记录,并将记录情况绘制成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,红星猕猴桃的价格z(单位:元/千克)与上市时间x(天)的函数关系式如图(2)所示.
(1)观察图象,直接写出日销售量的最大值;
(2)求小王家红心猕猴桃的日销量y与上市时间x的函数解析式;并写出自变量的取值范围.
(3)试比较第6天和第13天的销售金额哪天多?
25、(10分)在▱ABCD中,点E为AB边的中点,连接CE,将△BCE沿着CE翻折,点B落在点G处,连接AG并延长,交CD于F.
(1)求证:四边形AECF是平行四边形;
(2)若CF=5,△GCE的周长为20,求四边形ABCF的周长.
26、(12分)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB于点E,且∠EAB=∠DCB.
(1)求∠B的度数:
(2)求证:BC=3CE.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由一元二次方程根的判别式△≥0,结合一元二次方程的定义,即可求出k的取值范围.
【详解】
解:由题意得:,
,,
∴解得:.
故选:D.
本题考查了一元二次方程根的判别式,以及一元二次方程的定义,解题的关键是熟练掌握根的判别式求参数的取值范围.
2、C
【解析】
n边形的内角和为(n-2)180°,由此列方程求n的值
【详解】
解:设这个多边形的边数是n,
则:(n-2)180°=720°,
解得n=6,
故选:C.
本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
3、D
【解析】
∵k+b=-5,kb=6,∴kb是一元二次方程的两个根.
解得,或.∴k<1,b<1.
一次函数的图象有四种情况:
①当,时,函数的图象经过第一、二、三象限;
②当,时,函数的图象经过第一、三、四象限;
③当,时,函数的图象经过第一、二、四象限;
④当,时,函数的图象经过第二、三、四象限.
∴直线y=kx+b经过二、三、四象限.故选D.
4、C
【解析】
首先设,将代数式化为含有同类项的代数式,即可得解.
【详解】
设
∴
∴
故答案为C.
此题主要考查分式计算,关键是设参数求值.
5、A
【解析】
根据不等式的性质,应用排除法分别将各选项分析求解即可求得答案.
【详解】
A、∵a>b,c是任意实数,∴a-c>b-c,故本选项正确;
B、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;
C、当a>b,c<0时,ac>bc,而此题c是任意实数,故本选项错误;
D、当a>b,c>0时,ac<bc,而此题c是任意实数,故本选项错误.
故选A.
6、D
【解析】
我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.
【详解】
解:我国三国时期数学家赵爽在为《周髀算经》作注解时创造了一幅“弦图”,后人称其为“赵爽弦图”, “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.
故答案是:D.
本题考查了学生对我国数学史的了解,籍此培养学生的爱国情怀和民族自豪感,增强学习数学的兴趣.
7、D
【解析】
解:由题意得:x﹣1≠0,解得x≠1.故选D.
8、D
【解析】
①由直线y=-x+m与y轴交于负半轴,可得m<0;y=nx+4n(n≠0)的图象从左往右逐渐上升,可得n>0,即可判断结论①正确;
②将x=-4代入y=nx+4n,求出y=0,即可判断结论②正确;
③由整理即可判断结论③正确;
④观察函数图象,可知当x>-1时,直线y=nx+4n在直线y=-x+m的上方,即nx+4n>-x+m,即可判断结论④正确.
【详解】
解:①∵直线y=-x+m与y轴交于负半轴,∴m<0;
∵y=nx+4n(n≠0)的图象从左往右逐渐上升,∴n>0,
故结论①正确;
②将x=-4代入y=nx+4n,得y=-4n+4n=0,
∴直线y=nx+4n一定经过点(-4,0).
故结论②正确;
③∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1,
∴当x=-1时,y=1+m=-1n+4n,
∴m=1n-1.
故结论③正确;
④∵当x>-1时,直线y=nx+4n在直线y=-x+m的上方,
∴当x>-1时,nx+4n>-x+m,
故结论④正确.
故选:D.
本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象,逐一分析四条结论的正误是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、10%.
【解析】
设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.
【详解】
设平均每次降价的百分率为,根据题意列方程得,
,
解得,(不符合题意,舍去),
答:这个百分率是.
故答案为.
本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.
10、(1,2)
【解析】
根据位似变换的性质,坐标与图形性质计算.
【详解】
点B的坐标为(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B',B'的坐标为(2,0),
∴以原点O为位似中心,把△OAB缩小,得到△OA'B',
∵点A的坐标为(2,4),
∴点A'的坐标为(2×,4×),即(1,2),
故答案是:(1,2).
考查的是位似变换,坐标与图形性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
11、16
【解析】
根据根判别式得出答案.
【详解】
因为关于一元二次方程有两个相等的实数根,
所以
解得k=16
故答案为:16
考核知识点:根判别式.理解根判别式的意义是关键.
12、2
【解析】
因为1<<2,由此得到的整数部分a,再进一步表示出其小数部分b.
【详解】
因为1
相关试卷
这是一份北京市怀柔区2024-2025学年数学九上开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北京陈经纶中学2024-2025学年数学九上开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年菏泽市九上数学开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。