年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    北京市鲁迅中学2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】

    北京市鲁迅中学2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】第1页
    北京市鲁迅中学2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】第2页
    北京市鲁迅中学2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市鲁迅中学2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】

    展开

    这是一份北京市鲁迅中学2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在正方形中,,点,分别在、上,,,相交于点,若图中阴影部分的面积与正方形的面积之比为,则的周长为( )
    A.B.C.D.
    2、(4分)数据2,2,6,2,3,4,3,2,6,5,4,5,4的众数是( ).
    A.2B.3C.4D.6
    3、(4分)将一幅三角板如图所示摆放,若,那么∠1的度数为()(提示:延长EF或DF)
    A.45°B.60°C.75°D.80°
    4、(4分)下列各命题都成立,其中逆命题也成立的是( )
    A.若 a>0,b>0,则 a+b>0 B.对顶角相等
    C.全等三角形的对应角相等 D.平行四边形的两组对边分别相等
    5、(4分)如果,那么代数式的值为( )
    A.B.C.D.
    6、(4分)如图,在中,是边上的一点,射线和的延长线交于点,如果,那么的值是( )
    A.B.C.D.
    7、(4分)在直角三角形中,两条直角边的长分别为12和5,则斜边上的中线长是( )
    A.6.5B.8.5C.13D.
    8、(4分)下列二次根式,是最简二次根式的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在等边三角形ABC中,AB=5,在AB边上有一点P,过点P作PM⊥BC,垂足为M,过点M作MN⊥AC,垂足为N,过点N作NQ⊥AB,垂足为Q.当PQ=1时,BP=_____.
    10、(4分)菱形的两条对角线相交于,若,,则菱形的周长是___.
    11、(4分)数据,,,,,,的众数是______.
    12、(4分)正方形A1B1C1O,正方形A2B2C2C1,正方形A3B3C3C2,按如图所示的方式放置在平面直角坐标系中,若点A1、A2、A3和C1、C2、C3…分别在直线y=x+1和x轴上,则点B2019的坐标是_____.
    13、(4分)在直角三角形中,若勾为1,股为1.则弦为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)我国南宋时期数学家秦九昭及古希腊的几何学家海伦对于问题:“已知三角形的三边,如何求三角形的面积”进行了研究,并得到了海伦—秦九昭公式:如果一个三角形的三条边分别为,记,那么三角形的面积为,请用此公式求解:在中,,,,求的面积.
    15、(8分)春节前小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A,B两种水果进行销售,并分别以每箱35元与60元的价格出售,设购进A水果x箱,B水果y箱.
    (1)让小王将水果全部售出共赚了215元,则小王共购进A、B水果各多少箱?
    (2)若要求购进A水果的数量不得少于B水果的数量,则应该如何分配购进A, B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?
    16、(8分)先化简,再求值:(1﹣)÷,其中x=+1.
    17、(10分)已知:如图,菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,已知OE=,EF=3,求菱形ABCD的周长和面积.
    18、(10分)如图,在平行四边形AECF中,B,D是直线EF上的两点,BE=DF,连接AB,BC,AD,DC.求证:四边形ABCD是平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)将直线向上平移1个单位,那么平移后所得直线的表达式是_______________
    20、(4分)如图,在ABCD中,对角线AC,BD相交于点O,若再增加一个条件,就可得出ABCD是菱形,则你添加的条件是___________.
    21、(4分)已知一次函数y=kx+b的图像过点(-1,0)和点(0,2),则该一次函数的解析式是______。
    22、(4分)如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是__________.
    23、(4分)如果一梯子底端离建筑物9 m远,那么15 m长的梯子可到达建筑物的高度是____m.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知正方形与正方形(点C、E、F、G按顺时针排列),是的中点,连接,.
    (1)如图1,点在上,点在的延长线上,
    求证:=ME,⊥.ME
    简析: 由是的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE是 三角形,进而得出结论.
    (2)如图2, 在的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.
    (3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点在直线CD上,则DM= ;若点E在直线BC上,则DM= .
    25、(10分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
    (拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
    (应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)
    26、(12分)随着改革开放进程的推进,改变的不仅仅是人们的购物模式,就连支付方式也在时代的浪潮中发生着天翻地覆的改变,除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据阴影部分的面积与正方形ABCD的面积之比为2:3,得出阴影部分的面积为6,空白部分的面积为3,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.
    【详解】
    ∵阴影部分的面积与正方形ABCD的面积之比为2:3,
    ∴阴影部分的面积为×9=6,
    ∴空白部分的面积为9−6=3,
    由CE=DF,BC=CD,∠BCE=∠CDF=90°,
    可得△BCE≌△CDF,
    ∴△BCG的面积与四边形DEGF的面积相等,均为×3=,∠CBE=∠DCF,
    ∵∠DCF+∠BCG=90°,
    ∴∠CBG+∠BCG=90°,即∠BGC=90°,
    设BG=a,CG=b,则ab=,
    又∵a2+b2=32,
    ∴a2+2ab+b2=9+6=15,
    即(a+b)2=15,
    ∴a+b=,即BG+CG=,
    ∴△BCG的周长=​+3,
    故选D.
    此题考查了全等三角形的判定与性质、正方形的性质、勾股定理、完全平方公式的变形求值、以及三角形面积问题.解题时注意数形结合思想与方程思想的应用.
    2、A
    【解析】
    由众数的定义,求出其中出现次数最多的数即可.
    【详解】
    ∵数据1,1,6,1,3,4,3,1,6,5,4,5,4中,1出现了4次,出现的次数最多,
    ∴众数是1.
    故选:A.
    考查了众数,用到的知识点是众数的定义,关键是找出出现次数最多的数.
    3、C
    【解析】
    延长DF交BC于点G,根据两直线平行内错角相等可得度数,由外角的性质可得的度数,易知∠1的度数.
    【详解】
    解:如图,延长DF交BC于点G
    故选:C
    本题考查了平行线的性质,由题意添加辅助线构造内错角是解题的关键.
    4、D
    【解析】
    分别找到各选项的逆命题进行判断即可.
    【详解】
    A.的逆命题为若a+b>0,则a>0,b>0,明显错误,没有考虑b为负数且绝对值小于a的情况,
    B. 的逆命题为相等的角都是对顶角,明显错误,
    C. 的逆命题为对应角相等的三角形为全等三角形,这是相似三角形的判定方法,故错误,
    D. 的逆命题为两组对边分别相等的四边形是平行四边形,这是平行四边形的判定,正确.
    故选D.
    本题考查了真假命题的判定,属于简单题,找到各命题的逆命题是解题关键.
    5、D
    【解析】
    先把分母因式分解,再约分得到原式=,然后把x=3y代入计算即可.
    【详解】
    原式=•(x-y)=,
    ∵x-3y=0,
    ∴x=3y,
    ∴原式==.
    故选:D.
    本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
    6、A
    【解析】
    由平行四边形的性质可得AD∥BC,AB∥CD,从而可得△EAF∽△EBC,△EAF∽△CFD,由,可得,继而可得,即可求得=.
    【详解】
    :∵四边形ABCD是平行四边形,
    ∴AD∥BC,AB∥CD,
    ∴△EAF∽△EBC,△EAF∽△CFD,
    ∵,
    ∴,
    ∴,
    ∴=,
    故选A.
    本题考查了平行四边形的性质、相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方、周长比等于相似比是解题的关键.
    7、A
    【解析】
    利用勾股定理求得直角三角形的斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题.
    【详解】
    如图,在△ABC中,∠C=90°,AC=12,BC=1
    则根据勾股定理知,AB==13
    ∵CD为斜边AB上的中线
    ∴CD=AB=6.1.
    故选:A.
    本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.
    8、D
    【解析】
    根据最简二次根式具备的条件:被开方数不含分母,被开方数中不含能开得尽方的因数或因式,逐一进行判断即可得出答案.
    【详解】
    A, ,不是最简二次根式,故错误;
    B,,不是最简二次根式,故错误;
    C,,不是最简二次根式,故错误;
    D,是最简二次根式,故正确;
    故选:D.
    本题主要考查最简二次根式,掌握最简二次根式具备的条件是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、或
    【解析】
    分析:由题意可知P点可能靠近B点,也可能靠近A点,所以需要分为两种情况:设BM=x,AQ=y,
    若P靠近B点,由题意可得∠BPM=30°,根据直角三角形的性质可得BP=2BM=2x,AN=2y,CM=2CN=10-4y,再根据AB=BC=5,PQ=1,列方程组,解出x、y即可求得BP的长;
    若点P靠近A点,同理可得,求解即可.
    详解:设BM=x,AQ=y,
    若P靠近B点,如图
    ∵等边△ABC,
    ∴AB=BC=AC=5,∠A=∠B=∠C=60°
    ∵PM⊥BC
    ∴∠BMP=90°
    则Rt△BMP中,∠BPM=30°,
    ∴BM=BP
    则BP=2x
    同理AN=2y,
    则CN=5-2y
    在Rt△BCM中,CM=2CN=10-4y
    ∵AB=BC=5,PQ=1

    解得
    ∴BP=2x=;
    若点P靠近A点,如图
    由上面的解答可得BP=2x,AQ=y,CM=10-4y

    解得
    ∴BP=2x=
    综上可得BP的长为:或.
    点睛:此题主要考查了等边三角形的性质和30°角的直角三角形的性质,关键是正确画图,分两种情况讨论,注意掌握和明确方程思想和数形结合思想在解题中的作用.
    10、
    【解析】
    根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.
    【详解】
    ∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,
    ∴BO=OD=3,AO=OC=4,
    ∴AB==5,
    故菱形的周长为1,
    故答案为:1.
    本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.
    11、4
    【解析】
    根据众数概念分析即可解答.
    【详解】
    数据中出现次数最多的数为众数,故该组数据的众数为4
    故答案为:4
    本题为考查众数的基础题,难度低,熟练掌握众数概念是解答本题的关键.
    12、.
    【解析】
    先求得A1(0,1),OA1=1,然后根据正方形的性质求出C1(1,0),B1(1,1),同样的方法求出C2(3,0),B2(3,2),C3(7,0),B3(7,4),……,从而有Cn(2n-1,0),Bm(2n-1,2n-1),由此即可求得答案.
    【详解】
    当x=0时,y=x+1=1,
    ∴A1(0,1),OA1=1,
    ∵正方形A1B1C1O,
    ∴A1B1=B1C1=OC1=OA1=1,
    ∴C1(1,0),B1(1,1),
    当x=1时,y=x+1=2,
    ∴A2(1,2),C1A2=2,
    ∵正方形A2B2C2C1,
    ∴A2B2=B2C2=C1C2=C1A1=2,
    ∴C2(3,0),B2(3,2),
    当x=3时,y=x+1=4,
    ∴A3(3,4),C2A3=4,
    ∵正方形A3B3C3C2,
    ∴A3B3=B3C3=C2C3=C2A3=4,
    ∴C3(7,0),B3(7,4),
    ……
    ∴Cn(2n-1,0),Bm(2n-1,2n-1),
    ∴B2019(22019-1,22018),
    故答案为(22019-1,22018).
    本题考查一次函数图象上点的坐标特征、正方形的性质,解题的关键是明确题意,找出各个点之间的关系,利用数形结合的思想解答问题.
    13、
    【解析】
    根据勾股定理计算即可.
    【详解】
    解:由勾股定理得,弦=,
    故答案为:.
    本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
    三、解答题(本大题共5个小题,共48分)
    14、
    【解析】
    利用阅读材料,先计算出p的值,然后根据海伦公式计算△ABC的面积;
    【详解】
    解:,,,
    ,
    .
    考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.
    15、(1)小王共购进A水果25箱,B水果9箱;(2)应购进A水果15箱、B水果15箱能够获得最大利润,最大利润为225元.
    【解析】
    (1)根据题意中的相等关系“A种水果x箱的批发价+B种水果y箱的批发价=1200元,A种水果赚的钱+B种水果赚的钱=215元”列方程组求解即可;
    (2)先用x表示y,列出利润w的关系式,再根据题意求出x的取值范围,然后根据一次函数的性质求出w的最大值及购进方案.
    【详解】
    解:(1)根据题意,得
    ,即,解得.
    答:小王共购进A水果25箱,B水果9箱.
    (2)设获得的利润为w元,根据题意得,
    ∵,∴,
    ∵A水果的数量不得少于B水果的数量,
    ∴,即,解得.
    ∴,
    ∵,∴w随x的增大而减小,
    ∴当x=15时,w最大=225,此时.
    即应购进A水果15箱、B水果15箱能够获得最大利润,最大利润为225元.
    本题考查了二元一次方程组的应用、一元一次不等式的解法和一次函数的性质,正确理解题意列出方程组、灵活应用一次函数的性质是解此题的关键.
    16、.
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
    【详解】
    (1﹣)÷

    =,
    当x=+1时,原式=.
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    17、20,1
    【解析】
    首先由菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,根据直角三角形斜边上的中线等于斜边的一半,可求得AD的长,由三角形中位线定理可求得AC的长,进而可求出菱形的周长,再求出BD的长即可求出菱形的面积.
    【详解】
    ∵菱形ABCD的对角线AC,BD相交于点O,∴AC⊥BD,OA=OC,OB=OD,
    ∵点E,F分别是AD,DC的中点,∴OE=AD,EF=AC,
    ∵OE=2.5,EF=3,∴AD=5,AC=6,∴菱形ABCD的周长为:4×5=20;
    ∵AO=AC=3,AD=5,∴DO==4,∴BD=2DO=8,∴菱形ABCD的面积=AC•BD=1.
    本题考查了菱形的性质、三角形中位线的性质、勾股定理以及直角三角形的性质.注意根据题意求得AC与AD的长是解答此题的关键.
    18、见解析.
    【解析】
    连接AC交BD与点O.由四边形AECF是平行四边形,可证OA=OC,OE=OF,又BE=DF,所以OB=OD,根据对角线互相平分的四边形是平行四边形可证结论成立.
    【详解】
    证明:连接AC交BD与点O.
    ∵四边形AECF是平行四边形,
    ∴OA=OC,OE=OF,
    ∵BE=DF,
    ∴OE+BE=OF+DF,
    ∴OB=OD,
    ∴四边形ABCD是平行四边形.
    本题主要考查了平行四边形的判定,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤.两组对角分别相等的四边形是平行四边形.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    平移时k的值不变,只有b发生变化.
    【详解】
    原直线的k=2,b=0;向上平移2个单位长度,得到了新直线,
    那么新直线的k=2,b=0+1=1,
    ∴新直线的解析式为y=2x+1.
    故答案为:y=2x+1.
    本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.
    20、AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA
    【解析】
    根据一组邻边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC或BC=CD或CD=AD或AD=AB;
    根据对角线互相垂直的平行四边形是菱形可得,添加的条件可以是:AC⊥BD;
    根据四边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC=CD=DA.
    故答案是:AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA.
    21、y=2x+2
    【解析】
    根据一次函数解析式y=kx+b,再将点(-1,0)和点(0,2)代入可得方程组,解出即可得到k和b的值,即得到解析式.
    【详解】
    因为点(-1,0)和点(0,2)经过一次函数解析式y=kx+b,所以0=-x+b,2=b,得到k=2,b=2,所以一次函数解析式是:y=2x+2,故本题答案是:y=2x+2.
    本题考查用待定系数法求一次函数解析式,难度不大,关键是掌握待定系数发的运用.
    22、2
    【解析】
    由折叠可得:∠AFE=∠B=90°,依据勾股定理可得:Rt△CEF中,CF1.设AB= x,则AF=x ,AC=x+1,再根据勾股定理,可得Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+1)2,解方程即可得出AB的长,由矩形的性质即可得出结论.
    【详解】
    由折叠可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴Rt△CEF中,CF1.
    设AB= x,则AF=x ,AC=x+1.
    ∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+1)2,解得:x=2,∴AB=2.
    ∵ABCD是矩形,∴CD=AB=2.
    故答案为:2.
    本题考查了矩形的性质以及勾股定理的综合运用,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
    23、12
    【解析】
    ∵直角三角形的斜边长为15m,一直角边长为9m,
    ∴另一直角边长=,
    故梯子可到达建筑物的高度是12m.
    故答案是:12m.
    二、解答题(本大题共3个小题,共30分)
    24、(1)等腰直角;(2)结论仍成立,见解析;(3)或,.
    【解析】
    (1)结论:DM⊥EM,DM=EM.只要证明△AMH≌△FME,推出MH=ME,AH=EF=EC,推出DH=DE,因为∠EDH=90°,可得DM⊥EM,DM=ME;
    (2)结论不变,证明方法类似;
    (3)分两种情形画出图形,理由勾股定理以及等腰直角三角形的性质解决问题即可;
    【详解】
    解:(1) △AMN ≌ △FME ,等腰直角.
    如图1中,延长EM交AD于H.
    ∵四边形ABCD是正方形,四边形EFGC是正方形,
    ∴,,
    ∴,
    ∴,
    ∵,,
    ∴△AMH≌△FME,
    ∴,,
    ∴,
    ∵,
    ∴DM⊥EM,DM=ME.
    (2)结论仍成立.
    如图,延长EM交DA的延长线于点H,
    ∵四边形ABCD与四边形CEFG都是正方形,
    ∴,,
    ∴AD∥EF,∴.
    ∵,,
    ∴△AMF≌△FME(ASA), …
    ∴,,∴.
    在△DHE中,,,,
    ∴,DM⊥EM.
    (3)①当E点在CD边上,如图1所示,由(1)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时,所以;
    ②当E点在CD的延长线上时,如图2所示,由(2)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时 ,所以 ;
    ③当E点在BC上是,如图三所示,同(1)、(2)理可得到三角形DME为等腰直角三角形,
    证明如下:∵四边形ABCD与四边形CEFG都是正方形, 且点E在BC上
    ∴AB//EF,∴,
    ∵M为AF中点,∴AM=MF
    ∵在三角形AHM与三角形EFM中:
    ,
    ∴△AMH≌△FME(ASA),
    ∴,,∴.
    ∵在三角形AHD与三角形DCE中:

    ∴△AHD≌△DCE(SAS),
    ∴,
    ∵∠ADC=∠ADH+∠HDC=90°,
    ∴∠HDE=∠CDE+∠HDC=90°,
    ∵在△DHE中,,,,
    ∴三角形DME为等腰直角三角形,则DM的长为,此时在直角三角形DCE中 ,所以
    本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质,灵活运用相关的定理、正确作出辅助线是解题的关键.
    25、见解析
    【解析】
    试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
    应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
    试题解析:
    探究:∵四边形ABCD、四边形CEFG均为菱形,
    ∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
    ∵∠A=∠F,
    ∴∠BCD=∠ECG.
    ∴∠BCD-∠ECD=∠ECG-∠ECD,
    即∠BCE=∠DCG.
    在△BCE和△DCG中,

    ∴△BCE≌△DCG(SAS),
    ∴BE=DG.
    应用:∵四边形ABCD为菱形,
    ∴AD∥BC,
    ∵BE=DG,
    ∴S△ABE+S△CDE=S△BEC=S△CDG=8,
    ∵AE=3ED,
    ∴S△CDE= ,
    ∴S△ECG=S△CDE+S△CDG=10
    ∴S菱形CEFG=2S△ECG=20.
    26、.
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.
    【详解】
    解:将微信记为A、支付宝记为B、银行卡记为C,
    画树状图如下:
    ∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,
    ∴两人恰好选择同一种支付方式的概率为.
    此题考查列表法与画树状图法,解题关键在于画出树状图.
    题号





    总分
    得分
    批阅人

    相关试卷

    北京市各区2024年数学九年级第一学期开学学业质量监测试题【含答案】:

    这是一份北京市各区2024年数学九年级第一学期开学学业质量监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届浙江省东阳中学数学九年级第一学期开学学业质量监测模拟试题【含答案】:

    这是一份2025届浙江省东阳中学数学九年级第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届北京市九级数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2025届北京市九级数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map