年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    上海市闵行中学2024-2025学年高一上学期10月月考数学卷

    上海市闵行中学2024-2025学年高一上学期10月月考数学卷第1页
    上海市闵行中学2024-2025学年高一上学期10月月考数学卷第2页
    上海市闵行中学2024-2025学年高一上学期10月月考数学卷第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    上海市闵行中学2024-2025学年高一上学期10月月考数学卷

    展开

    这是一份上海市闵行中学2024-2025学年高一上学期10月月考数学卷,共7页。试卷主要包含了已知集合,,则______,不等式的解集是______等内容,欢迎下载使用。
    一.填空题(本大题共有12题,满分54分)考生必须在答题纸的相应编号的空格内直接填写结果,1-6填对每题得4分,7-12填对每题得5分.
    1.已知集合,,则______.
    2.不等式的解集是______.
    3.集合可以用列举法表示为______.
    4.设方程的两根为、,则______.
    5.已知不等式的解集为,则______.
    6.若要用反证法证明“对于三个实数a、b、c,若,则或”,第一步应假设______.
    7.某班共50人,其中21人喜爱篮球运动,18人喜爱乒乓球运动,20人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为______.
    8.已知集合是单元素集,则实数的取值集合为______.
    9.已知集合,,若,则实数的取值范围是______.
    10.不等式的解集是______.
    11.已知、,关于的不等式组解集为,则的值为______.
    12.已知集合,集合,且,则实数的取值范围是______.
    二.选择题(本大题满分18分)本大题共有4小题,每题有且只有一个正确答案,考生必须在答题纸的相应编号上,将代表答案的小方格用铅笔涂黑,13-14选对每题得4分,15-16选对每题得5分,否则一律得零分.
    13.给出下列关系式,错误的是( )
    A.B.C.D.
    14.“”是“或”的( )
    A.充分而不必要条件B.必要而不充分条件
    C.充分必要条件D.既不充分也不必要条件
    15.已知关于x的不等式,下列结论正确的是( )
    A.不等式的解集不可以是;
    B.不等式的解集可以是;
    C.不等式的解集可以是;
    D.不等式的解集可以是.
    16.已知a、b都是正数,集合,,若任意的,都有或.则下列结论中正确的是( )
    A.B.C.D.
    三.解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.
    17.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.
    已知集合,集合.
    (1)求集合;
    (2)若全集,求.
    18.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.
    已知命题:实数满足,命题:实数满足(其中).
    (1)若,且命题和中至少有一个为真命题,求实数的取值范围;
    (2)若是的充分条件,求实数的取值范围.
    19.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.
    如图所示,有一块矩形空地,要在这块空地上开辟一个内接四边形绿地(图中四边形).使其四个顶点分别落在矩形的四条边上,已知米,米,且.
    (1)设米(),求出四边形的面积关于的表达式;
    (2)为使绿地面积不小于空地面积的一半,求长的最大值.
    20.(本题满分18分)本题共3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
    解决下列问题:
    (1)已知、,设,.比较与的大小;
    (2)已知命题P:如果实数a、b为正数,且满足,则和中至少有一个成立.判断命题P是否正确,并说明理由;
    (3)请根据矩形图表信息,补齐不等式______.(其中a,b,c,d都为正数)并给出它的代数证明.
    21.(本题满分18分)本题共3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
    已知函数和,定义集合.
    (1)设,,求;
    (2)设,,,若任意,都有,求实数的取值范围;
    (3)设,,,若存在,使得且,求实数的取值范围.
    2024学年第一学期单元考试
    高一数学试卷答案
    一.填空题(本大题共有12题,满分54分)考生必须在答题纸的相应编号的空格内直接填写结果,1-6填对每题得4分,7-12填对每题得5分.
    二.选择题(本大题满分18分)本大题共有4小题,每题有且只有一个正确答案,考生必须在答题纸的相应编号上,将代表答案的小方格用铅笔涂黑,13-14选对每题得4分,15-16选对每题得5分,否则一律得零分.
    CACB
    三.解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.
    17.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.
    【解】(1)由得:,
    即,
    解得:,∴.
    (2)由(1)知:;
    由得:,
    解得:,即,
    ∴.
    18.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.
    【解】(1):实数满足,解得,
    当时,:,解得,
    ∵和至少有一个为真,∴或,∴,
    ∴实数的取值范围为;
    (2)∵,由,解得,
    即:,
    ∵是的充分条件,
    ∴∴,
    实数的取值范围是
    19.略
    20.(本题满分18分)本题共3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
    【解】(1)解:∵

    ∴,即;
    (2)命题正确
    用反证法证明如下:
    假设和都不成立,
    则且,
    由已知,实数、为正数实数,
    ∴且,
    故,可得,
    与已知矛盾,故假设不成立,
    ∴和中至少有一个成立.
    (3)不等式为:
    证明:
    又因为
    所以
    因为a,b,c,d都为正数,所以
    所以

    21.(本题满分18分)本题共3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
    【解】(1)已知,
    由,即
    当时,不等式化为,得,
    此时,不等式的解为.
    当时,不等式化为,即,恒成立,
    此时,不等式的解为.
    当时,不等式化为,得.
    此时,不等式的解为.
    综上所述,的解集为,即.
    (2)由题意知,不等式①恒成立,
    且不等式②恒成立;
    由(1)得,,
    ,解得;
    由②得,,
    时,不等式化为恒成立,
    时,应满足,解得;
    综上知,的取值范围是.
    (3)已知,,,
    由题意得,不等式组有解,
    由,
    又,
    (1)当,即时,上式为,对任意桓成立.
    此时不等式组有解,满足题意;
    ②当,即时,,或,
    要使不等式组有解,则,或,解得,
    则有;
    ③当,即时,,或.
    要使不等式组有解,
    则,或,解得,
    则有;
    综上所述,的取值范围是
    1
    2
    3
    4
    5
    6
    6
    0

    7
    8
    9
    10
    11
    12
    12

    相关试卷

    2023-2024学年上海市闵行第三中学高一上学期12月月考数学试题含答案:

    这是一份2023-2024学年上海市闵行第三中学高一上学期12月月考数学试题含答案,共14页。试卷主要包含了填空题,单选题,问答题,应用题等内容,欢迎下载使用。

    上海市闵行(文绮)中学2023-2024学年高一上学期12月学情调研数学试题:

    这是一份上海市闵行(文绮)中学2023-2024学年高一上学期12月学情调研数学试题,共4页。

    2022-2023学年上海市闵行中学东校高一上学期期末数学试题(解析版):

    这是一份2022-2023学年上海市闵行中学东校高一上学期期末数学试题(解析版),共12页。试卷主要包含了填空题,单选题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map