山东省青岛市城阳第一高级中学2024-2025学年高二上学期10月月考数学试题
展开
这是一份山东省青岛市城阳第一高级中学2024-2025学年高二上学期10月月考数学试题,文件包含高二数学月考docx、答案docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
(考试时间:120分钟 试卷满分:150分)
一、单项选择题:本题共8小题,每小题5分,共40分
1.我国古代数学名著《九章算术》有一抽样问题:“今有北乡若干人,西乡四百人,南乡两百人,凡三乡,发役六十人,而北乡需遗十,问北乡人数几何?“其意思为:“今有某地北面若干人,西面有400人,南面有200人,这三面要征调60人,而北面共征调10人(用分层抽样的方法),则北面共有( )人.”
A.200B.100C.120D.140
2.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是
A.平均数B.中位数
C.方差D.极差
3.有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是
A.至少有1件次品与至多有1件正品
B.至少有1件次品与2件都是正品
C.至少有1件次品与至少有1件正品
D.恰有1件次品与恰有2件正品
4.两个等差数列和的前项和分别为、,且,则等于( )
A.B.C.D.
5.已知数列满足:,则
A.16B.28C.25D.33
6.疫情期间,一同学通过网络平台听网课,在家坚持学习.某天上午安排了四节网课,分别是数学,语文,政治,地理,下午安排了三节,分别是英语,历史,体育.现在,他准备在上午下午的课程中各任选一节进行打卡,则选中的两节课中至少有一节文综学科(政治、历史、地理)课程的概率为( )
A.B.C.D.
7.已知数列an满足,对,,都有,为数列an的前n项乘积,若,则( )
A.B.C.D.
8.在数学上,斐波纳契数列定义为:,,,斐波纳契数列有种看起来很神奇的巧合,如根据可得,所以,类比这一方法,可得 )
A.714B.1870C.4895D.4896
二、多选题(每题6分,共18分,选错不得分,部分选对的,得部分分,有两个选项的漏选一个扣3分,有三个选项漏选一个扣2分)
9.近年来,乡村游成为中国国民旅游的热点,下面图1,2,3,4分别为2023年中国乡村旅游消费者年龄、性别、月收入及一次乡村旅游花费金额的有关数据分析,根据该图,下列结论错误的是( )
A.2023年中国乡村旅游消费者中年龄在岁之间的男性占比不超过
B.2023年中国乡村旅游消费者中月收入不高于1万元的占比超过
C.2023年中国乡村旅游消费者中一次乡村旅游花费4个范围占比的中位数为
D.2023年中国乡村旅游消费者一次乡村旅游花费的平均数估计值高于650元(同一花费区间内的数据用其中间值作代表)
10.设等比数列的公比为,前项积为,且满足条件,则下列选项正确的是( )
A.
B.
C.的值是中最大的
D.使成立的最大自然数等于4044
11.抛出一枚质地均匀的硬币n次,得到正反两面的概率相同.事件次中既有正面朝上又有反面朝上,事件B:n次中最多有一次正面朝上,下列说法正确的是( )
A.当时,A,B相互独立B.当时,A,B相互独立
C.时,D. 时,
第II卷(非选择题)
三、填空题(每题5分,共15分)
12.已知某7个数的平均数为2,方差为4,现加入一个新数据2,此时这8个数的方差为 .
13.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为 .
14.已知等差数列的前n项和为,,则的取值范围为 .
四、解答题(共77分)
15(13分).甲、乙、丙三人进行乒乓球比赛,比赛规则如下:每次比赛两人上场比赛,第三人为裁判,一局结束后,败者下场作为裁判,原裁判上场与胜者比赛,按此规则循环下去,共进行4局比赛.三人决定由乙、丙先上场比赛,甲作为裁判.
(1)第一局比赛开始前,丙提出由掷骰子决定谁先发球,连续抛掷一枚质地均匀的六面体骰子两次,记下骰子朝上的点数,若两次点数之和为6则由乙发球,两次点数之和能被4整除则由丙发球,用所学知识判断这个方法公平吗?并说明理由;
(2)三人实力相当,在每局比赛中战胜对手的概率均为,每局比赛相互独立且每局比赛没有平局,求在四局比赛中甲当2局裁判的概率.
16.(15分)某地区有小学生9000人,初中生8600人,高中生4400人,教育局组织网络“防溺水”网络知识问答,现用分层抽样的方法从中抽取220名学生,对其成绩进行统计分析,得到如下图所示的频率分布直方图所示的频率分布直方图.
(1)根据频率分布直方图,估计该地区所有学生中知识问答成绩的平均数和众数;
(2)成绩位列前10%的学生平台会生成“防溺水达人”优秀证书,试估计获得“防溺水达人”的成绩至少为多少分;
(3)已知落在60,70内的平均成绩为67,方差是9,落在内的平均成绩是73,方差是29,求落在内的平均成绩和方差.
(附:设两组数据的样本量、样本平均数和样本方差分别为:.记两组数据总体的样本平均数为,则总体样本方差)
17(15分).如图,四边形ABCD与BDEF均为菱形,,且.
(1)求证:平面BDEF;
(2)求直线AD与平面ABF所成角的正弦值.
18(17分).已知为数列的前n项和,,.
(1)求的通项公式;
(2)求数列的前n项和.
19(17分).在高中数学教材苏教版选择性必修2的101页11题阐述了这样一个问题:假设某种细胞分裂(每次分裂都是一个细胞分裂成两个)和死亡的概率相同,如果一个种群从这样的一个细胞开始变化,那么这个种群最终灭绝的概率是多少?在解决这个问题时,我们可以设一个种群由一个细胞开始,最终灭绝的概率为p,则从一个细胞开始,它有的概率分裂成两个细胞,在这两个细胞中,每个细胞灭绝的概率都是p,两个细胞最终都走向灭绝的概率就是,于是我们得到:,计算可得;我们也可以设一个种群由一个细胞开始,最终繁衍下去的概率为p,那么从一个细胞开始,它有的概率分裂成两个细胞,每个细胞繁衍下去的概率都是p,两个细胞最终都走向灭绝的概率就是,于是我们得到:,计算可得.根据以上材料,思考下述问题:一个人站在平面直角坐标系的,他每步走动都会有的概率向左移动1个单位,有的概率向右移动一个单位,原点处有一个陷阱,若掉入陷阱就会停止走动,以代表当这个人由开始,最终掉入陷阱的概率.
)若这个人开始时位于点处,且,
(1)求他在5步内(包括5步)掉入陷阱的概率;
(2)求他最终掉入陷阱的概率;
(3)已知,若,求.
相关试卷
这是一份山东省青岛市超银高级中学2024-2025学年高一上学期第一次月考数学试卷(无答案),共3页。试卷主要包含了“”是“”的,命题“,”的否定是,设,且,则的最大值是,不等式的解集为,若,,则一定有,已知集合,,则,下列说法正确的是等内容,欢迎下载使用。
这是一份吉林省吉林市第四高级中学2024-2025学年高二上学期第一次月考数学试题(无答案),共4页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省成都市石室阳安学校2024-2025学年高二上学期9月月考数学试题,共8页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。