开学活动
搜索
    上传资料 赚现金

    北京市中学国人民大附中2025届九上数学开学学业水平测试试题【含答案】

    北京市中学国人民大附中2025届九上数学开学学业水平测试试题【含答案】第1页
    北京市中学国人民大附中2025届九上数学开学学业水平测试试题【含答案】第2页
    北京市中学国人民大附中2025届九上数学开学学业水平测试试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市中学国人民大附中2025届九上数学开学学业水平测试试题【含答案】

    展开

    这是一份北京市中学国人民大附中2025届九上数学开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)样本数据3、6、a、4、2的平均数是5,则这个样本的方差是( )
    A.8B.5C.D.3
    2、(4分)关于数据-4,1,2,-1,2,下面结果中,错误的是( )
    A.中位数为1B.方差为26C.众数为2D.平均数为0
    3、(4分)如图,□ABCD的对角线相交于点O,下列式子不一定正确的是( )
    A.AC=BDB.AB=CDC.∠BAD=∠BCDD.AO=CO
    4、(4分)(2016山西省)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是( )
    A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH
    5、(4分)点P(1,2)关于原点的对称点P′的坐标为( )
    A.(2,1) B.(﹣1,﹣2) C.(1,﹣2) D.(﹣2,﹣1)
    6、(4分)下列二次根式中,最简二次根式的是( )
    A.B.C.D.
    7、(4分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC的面积为()
    A.16B.18C.24D.32
    8、(4分)关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是( )
    A.①③B.②③C.①④D.②④
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,折线ABC是某市在2018年乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图像,观察图像回答,乘客在乘车里程超过3千米时,每多行驶1km,要再付费__________元.
    10、(4分)如果最简二次根式与是同类二次根式,那么a=________.
    11、(4分)已知y与x﹣1成正比例,当x=3时,y=4;那么当x=﹣3时,y=_____.
    12、(4分)已知在正方形中,,则正方形的面积为__________.
    13、(4分)在△ABC中,点D,E分别是AB,AC的中点,且DE=3cm,则BC=_____________cm;
    三、解答题(本大题共5个小题,共48分)
    14、(12分)以△ABC的三边在BC同侧分别作三个等边三角形△ABD,△BCE ,△ACF,试回答下列问题:
    (1)四边形ADEF是什么四边形?请证明:
    (2)当△ABC满足什么条件时,四边形ADEF是矩形?
    (3)当△ABC满足什么条件时,四边形ADEF是菱形?
    (4)当△ABC满足什么条件时,能否构成正方形?
    (5)当△ABC满足什么条件时,无法构成四边形?
    15、(8分)如图,在平面直角坐标系中,直线的解析式为,点的坐标分别为(1,0),(0,2),直线与直线相交于点.
    (1)求直线的解析式;
    (2)点在第一象限的直线上,连接,且,求点的坐标.
    16、(8分)已知,在正方形中,点、在上,且.
    (1)求证:四边形是菱形;
    (2)若正方形的边长为,求菱形的面积.
    17、(10分)某校需要招聘一名教师,对三名应聘者进行了三项素质测试下面是三名应聘者的综合测试成绩:
    (1)如果根据三项测试的平均成绩确定录用教师,那么谁将被录用?
    (2)学校根据需要,对基本素质、专业知识、教学能力的要求不同,决定按2:1:3的比例确定其重要性,那么哪一位会被录用?
    18、(10分)计算:(﹣1)2018+﹣×+(2+)(2﹣)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,AB=5,BD=6,则菱形ABCD的面积是_____.
    20、(4分)如图,已知点是双曲线在第一象限上的一动点,连接,以为一边作等腰直角三角形(),点在第四象限,随着点的运动,点的位置也不断的变化,但始终在某个函数图像上运动,则这个函数表达式为______.
    21、(4分)小张将自己家里1到6月份的用电量统计并绘制成了如图所示的折线统计图,则小张家1到6月份这6个月用电量的众数与中位数的和是_____度.
    22、(4分)若甲、乙、丙、丁四个同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为s甲2=0.80,s乙2=1.31,s丙2=1.72,s丁2=0.42,则成绩最稳定的同学是______.
    23、(4分)如图,一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),则关于x的方程kx=b的解是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)潮州市某学校为了改善办学条件,购置一批电子白板和台式电脑合共24台.经招投标,一台电子白板每台9000元,一台台式电脑每台3000元,设学校购买电子白板和台式电脑总费用为元,购买了台电子白板,并且台式电脑的台数不超过电子白板台数的3倍.
    (1)请求出与的函数解析式,并直接写出的取值范围
    (2)请问当购买多少台电子白板时,学校购置电子白板和台式电脑的总费用最少,最少多少钱?
    25、(10分)世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(℉),两种计量之间有如下对应:
    已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.
    求该一次函数的解析式;
    当华氏温度14℉时,求其所对应的摄氏温度.
    26、(12分)一种五米种子的价格为5元/kg,A如果一次购买2kg以上的种子,超过2kg部分的种子价格打八折.
    (1)填写表:
    (2)写出付款金额关于购买量的函数解析式,并画出函数图象.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    本题可先求出a的值,再代入方差的公式即可.
    【详解】
    ∵3、6、a、4、2的平均数是5,
    ∴a=10,
    ∴方差.
    故选A.
    本题考查的知识点是平均数和方差的求法,解题关键是熟记计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.
    2、B
    【解析】
    A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;
    B. , ,故不正确;
    C.∵众数是2,故正确;
    D.,故正确;
    故选B.
    3、A
    【解析】
    根据平行四边形的性质逐项判断即可得.
    【详解】
    A、平行四边形的对角线不一定相等,则不一定正确,此项符合题意
    B、平行四边形的两组对边分别相等,则一定正确,此项不符题意
    C、平行四边形的两组对角分别相等,则一定正确,此项不符题意
    D、平行四边形的两对角线互相平分,则一定正确,此项不符题意
    故选:A.
    本题考查了平行四边形的性质,熟记平行四边形的性质是解题关键.
    4、D
    【解析】
    先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.
    【详解】
    解:设正方形的边长为2,则CD=2,CF=1
    在直角三角形DCF中,
    ∴矩形DCGH为黄金矩形
    故选:D.
    本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.
    5、B
    【解析】
    根据两个点关于原点对称时,它们的坐标符号相反可得答案.
    【详解】
    点P(1,2)关于原点的对称点P′的坐标为(-1,-2),
    故选B.
    此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.
    6、D
    【解析】
    分析:根据最简二次根式的概念逐项分析即可.
    详解: A. =2 , 故不是最简二次根式;
    B. =, 故不是最简二次根式;
    C.当a≥0时, , 故不是最简二次根式;
    D. 的被开方式既不含分母,又不含能开的尽的因式,故是最简二次根式;
    故选D.
    点睛:本题考查了二次根式的识别,如果二次根式的被开放式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.
    7、C
    【解析】
    过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再根据S△ABC=S△BCD+S△ABD列式计算即可得解.
    【详解】
    如图,过点D作DE⊥AB于E,
    ∵∠ACB=90°,BD平分∠ABC,
    ∴DE=CD=3,
    ∴S△ABC=S△BCD+S△ABD=BC⋅CD+AB⋅DE= (BC+AB)×3
    ∵BC+AB=16,
    ∴△ABC的面积=×16×3=24.
    故选C.
    本题考查角平分线的性质定理,作辅助线是解题关键.
    8、C
    【解析】
    垂直于弦的直径平分弦,所以①正确;
    平分弦(非直径)的直径垂直于弦,所以②错误;
    在同圆或等圆中,相等的弦所对的圆周角相等或互补,所以③错误;
    在同圆或等圆中,相等的圆周角所对的弦相等,所以④正确.
    故选C.
    点睛:本题考查了圆周角定理:在同圆或等圆中,同弧所对的圆周角线段,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.1
    【解析】
    分析:由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,由此可解每多行驶1km要再付的费用.
    详解:由图象可知,出租车行驶距离超过3km时,车费开始增加,而且行驶距离增加5km,车费增加7元,所以,每多行驶1km要再付费7÷5=1.1(元).
    故答案为1.1.
    点睛:本题考查了函数图象问题,解题的关键是理解函数图象的意义.
    10、1
    【解析】
    根据同类二次根式可知,两个二次根式内的式子相等,从而得出a的值.
    【详解】
    ∵最简二次根式与是同类二次根式
    ∴1+a=4a-2
    解得:a=1
    故答案为:1.
    本题考查同类二次根式的应用,解题关键是得出1+a=4a-2.
    11、﹣8
    【解析】
    首先根据题意设出关系式:y=k(x-1),再利用待定系数法把x=3,y=4代入,可得到k的值,再把k的值代入所设的关系式中,然后把x=-3代入即可求得答案.
    【详解】
    ∵y与x-1成正比例,
    ∴关系式设为:y=k(x-1),
    ∵x=3时,y=4,
    ∴4=k(3-1),
    解得:k=2,
    ∴y与x的函数关系式为:y=2(x-1)=2x-2,
    当x=-3时,y=-6-2=-8,
    故答案为:-8.
    本题考查了待定系数法求一次函数解析式,关键是设出关系式,代入x,y的值求k.
    12、
    【解析】
    正方形是特殊的菱形,故根据菱形的面积计算公式即可求正方形ABCD的面积,即可解题.
    【详解】
    如图,
    ∵AC的长为4,
    ∴正方形ABCD的面积为×42=1,
    故答案为:1.
    本题考查了正方形面积的计算,掌握正方形的面积公式是解题关键.
    13、1
    【解析】
    由D,E分别是边AB,AC的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得BC的值即可.
    【详解】
    ∵△ABC中,D、E分别是AB、AC边上的中点,
    ∴DE是三角形的中位线,
    ∵DE=3cm,
    ∴BC=2DE=1cm.
    故答案为:1.
    本题重点考查了中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)当△ABC中的∠BAC=150°时,四边形ADEF是矩形;(3)当△ABC中的AB=AC时,四边形ADEF是菱形;(4)当∠BAC=150°且AB=AC时,四边形ADEF是正方形;(5)当∠BAC=60°时,D、A、F为同一直线,与E点构不成四边形,即以A、D、E、F为顶点的四边形不存在.
    【解析】
    (1)通过证明△DBE≌△ABC,得到DE=AC,利用等边三角形ACF,可得DE=AF,
    同理证明与全等,利用等边三角形,得AD=EF,可得答案.(2)利用平行四边形ADEF是矩形,结合已知条件等边三角形得到即可.(3)利用平行四边形ADEF是菱形形,结合已知条件等边三角形得到即可.(4)结合(2)(3)问可得答案.(5)当四边形ADEF不存在时,即出现三个顶点在一条直线上,因此可得答案。
    【详解】
    解:(1) ∵△BCE、△ABD是等边三角形,
    ∴∠DBA=∠EBC=60°,AB=BD,BE=BC,
    ∴∠DBE=∠ABC,
    ∴△DBE≌△ABC,
    ∴DE=AC,
    又△ACF是等边三角形, ∴AC=AF,
    ∴DE=AF,
    同理可证:AD=EF,
    ∴四边形ADEF是平行四边形.
    (2) 假设四边形ADEF是矩形, 则∠DAF=90°,
    又∠DAB=∠FAC=60°, ∠DAB+∠FAC+∠DAF+∠BAC=360°
    ∴∠BAC=150°.
    因此当△ABC中的∠BAC=150°时,四边形ADEF是矩形.
    (3)假设四边形ADEF是菱形, 则AD=DE=EF=AF
    ∵AB=AD,AC=AF,∴AB=AC
    因此当△ABC中的AB=AC时,四边形ADEF是菱形.
    (4)结合(2)(3)问可知当∠BAC=150°且AB=AC时,
    四边形ADEF是正方形.
    (5)由图知道:∠DAB+∠FAC+∠DAF+∠BAC=360°
    ∴当∠BAC=60°时,D、A、F为同一直线,与E点构不成四边形,
    即以A、D、E、F为顶点的四边形不存在.
    本题考查了平行四边形的判定,菱形,矩形,正方形的性质与判定,全等三角形的判定,等边三角形的性质等知识点的应用,是一道综合性比较强的题目,掌握相关的知识点是解题的关键.
    15、(1)y=−2x+2;(2)
    【解析】
    (1)利用待定系数法即可得到直线AB的表达式;
    (2)通过解方程组即可得到点P的坐标,设点Q(t,2t−6),作QH⊥x轴,垂足为H,PK⊥x轴,垂足为K.可得KA=2−1=1,PK=2,HA=t−1,QH=2t−6,根据勾股定理得到AP,AQ,根据AP=AQ得到关于t的方程,解方程求得t,从而得到点Q的坐标.
    【详解】
    解:(1)设AB的解析式为y=kx+b(k≠0),
    把(1,0)、(0,2)代入y=kx+b
    得:,解得:k=−2,b=2,
    ∴y=−2x+2;
    (2)联立得,解得:x=2,y=−2,
    ∴P(2,−2),
    设点Q(t,2t−6),作QH⊥x轴,垂足为H.PK⊥x轴,垂足为K.
    KA=2−1=1,PK=2,HA=t−1,QH=2t−6
    AP=,AQ=,
    ∵AP=AQ,
    ∴(t−1)2+(2t−6)2=5,
    解得:t1=2(舍去);t2=,,
    把x=代入y=2x−6,得y=,
    ∴.
    此题主要考查了一次函数图象相交问题,以及待定系数法求一次函数解析式,关键是掌握两函数图象相交,交点坐标就是两函数解析式组成的方程组的解.
    16、(1)见解析;(2)-4.
    【解析】
    【分析】(1)由对角线互相垂直平分的四边形是菱形,AO=CO,EO=FO,AC⊥EF即可证得;
    (2)先求出AC、BD的长,再根据已知求出EF的长,然后利用菱形的面积公式进行计算即可得.
    【详解】(1)如图,连接AC,交BD于点O,
    ∵四边形ABCD是正方形,
    ∴OA=OC,OB=OD,
    又∵BE=DF,
    ∴BE-BO=DF-DO,即OE=OF,
    ∴四边形AFCE是平行四边形,
    ∵AC⊥EF,∴□AFCE是菱形;
    (2)∵四边形ABCD是正方形,
    ∴AC=BD,AB=AD=2, ∠BAD=90°
    ∴AC=BD=,
    ∵AB=BE=DF,
    ∴BF=DE=-2,
    ∴EF=4-,
    ∴S菱形=EF·AC=(4-)·=-4.
    【点睛】本题考查了正方形的性质,菱形的判定与性质,熟练掌握正方形的性质、菱形的判定与性质定理、准确添加辅助线是解题的关键.
    17、(1)A将被录用;(2)C将被录用.
    【解析】
    (1)根据算术平均数的计算公式进行计算即可,
    (2)根据加权平均数的计算公式进行计算即可
    【详解】
    解:的平均成绩为:分,
    B的平均成绩为:分,
    C的平均成绩为:分,
    则根据三项测试的平均成绩确定录用教师,A将被录用,
    的测试成绩为:分,
    B的测试成绩为:分,
    C的测试成绩为:分,
    则按2:1:3的比例确定其重要性,C将被录用.
    本题主要考查算术平均数和加权平均数的计算公式,解决本题的关键是要熟练掌握算术平均数和加权平均数的计算公式.
    18、1
    【解析】
    先计算乘方、利用性质1、二次根式的乘法、平方差公式计算,再计算加减可得.
    【详解】
    解:原式=1+3﹣+4﹣3
    =4﹣3+4﹣3
    =1.
    本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及平方差公式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、24
    【解析】
    根据菱形的对角线互相垂直,利用勾股定理列式求出OA,再根据菱形的对角线互相平分求出AC,然后利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.
    【详解】
    ∵四边形ABCD是菱形,
    ∴OB=OD=3,OA=OC,AC⊥BD,
    在Rt△AOB中,∠AOB=90°,
    根据勾股定理,得:,
    ∴AC=2OA=8,
    ∴S菱形ABCD=×AC×BD=×6×8=24.
    故答案为:24.
    此题考查菱形的性质,勾股定理求线段,菱形的面积有两种求法:①底乘以高;②对角线乘积的一半,解题中根据题中的已知条件选择合适的方法.
    20、.
    【解析】
    设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,由全等三角形的判定定理可知△AOD△OBE(ASA),故可得出,即可求得的值.
    【详解】
    解:设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,如图:
    ∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,
    ∴∠OAD=∠BOE,
    同理可得∠AOD=∠OBE,
    在△AOD和△OBE中, ,
    ∴△AOD△OBE(ASA),
    ∵点B在第四象限,
    ∴,即,
    解得,
    ∴反比例函数的解析式为:.
    故答案为.
    本题考查动点问题,难度较大,是中考的常考知识点,正确作出辅助线,证明两个三角形全等是解题的关键.
    21、1
    【解析】
    根据折线统计图,可得1到6月份的用电量的众数与中位数,相加求和即可.
    【详解】
    解:根据1到6月份用电量的折线统计图,可得150出现的次数最多,为2次,故用电量的众数为150(度);
    1到6月份用电量按大小排列为:250,225,150,150,128,125,50,故中位数为150(度),
    ∴众数与中位数的和是:150+150=1(度).
    故答案为1.
    本题主要考查了中位数以及众数的定义,解决问题的关键是掌握:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.解题时注意:一组数据中出现次数最多的数据叫做众数.
    22、丁
    【解析】
    首先比较出S甲2、S乙2、S丙2、S丁2的大小关系,然后根据方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越,小,稳定性越好,判断出成绩最稳定的同学是谁即可.
    【详解】
    ∵S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,
    ∴S丁2<S甲2<S乙2<S丙2,
    ∴成绩最稳定的是丁,
    故答案为:丁.
    此题主要考查了方差的含义和性质的应用,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    23、x=1
    【解析】
    依据待定系数法即可得到k和b的值,进而得出关于x的方程kx=b的解.
    【详解】
    解:∵一次函数y=kx+b的图象与x轴相交于点(﹣1,0),与y轴相交于点(0,3),
    ∴ ,
    解得,
    ∴关于x的方程kx=b即为:x=3,
    解得x=1,
    故答案为:x=1.
    本题主要考查了待定系数法的应用,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)(,且为整数);(2)当购买电子白板6台,台式电脑18台学校总费用最少钱,最少是108000元.
    【解析】
    (1)根据题意“电子白板和台式电脑合共24台,一台电子白板每台9000元,一台台式电脑每台3000元”即可列出与的函数解析式,又根据“台式电脑的台数不超过电子白板台数的3倍”求出x的取值范围;
    (2)根据一次函数的性质即可得随的增大而增大,所以当时,有最小值.
    【详解】
    解:(1)依题意可得:

    ∵台式电脑的台数不超过电子白板台数的3倍,
    ∴24-x≤3x
    x≥6,
    则x的取值范围为,且为整数;
    (2)∵,,
    ∴随的增大而增大,∴当时,有最小值.
    (元)
    答:当购买电子白板6台,台式电脑18台学校总费用最少钱,最少是108000元.
    本题考查了一次函数的性质和应用,解题的关键是读懂题意,找出之间的数量关系列出一次函数,此题难度不大.
    25、(1)y=1.8x+1;(2)华氏温度14℉所对应的摄氏温度是-2℃.
    【解析】
    分析:(1)设y=kx+b(k≠0),利用图中的两对数,用待定系数法求解即可;
    (2)把 y=14代入(1)中求得的函数关系式求出x的值即可.
    详解:(1)设一次函数表达式为y=kx+b(k≠0).
    由题意,得,解得.
    ∴一次函数的表达式为y=1.8x+1.
    (2)当y=14时,代入得14=1.8x+1,解得x=-2.
    ∴华氏温度14℉所对应的摄氏温度是-2℃.
    点睛:本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键. 利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式;②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.
    26、(1)2.5、5、7.5、10、12、14、16、18;(2)
    【解析】
    (1)根据题意可以将表格中的数据补充完整;
    (2)根据题意和表格中的数据可以写出相应的函数解析式和画出相应的函数图象.
    【详解】
    解:(1)设购买种子为xkg,付款金额为y元,
    当x=0.5时,y=5×0.5=2.5,
    当x=1时,y=5×1=5,
    当x=1.5时,y=5×1.5=7.5,
    当x=2时,y=5×2=10,
    当x=2.5时,y=5×2+(2.5﹣2)×5×0.8=12,
    当x=3时,y=5×2+(3﹣2)×5×0.8=14,
    当x=3.5时,y=5×2+(3.5﹣2)×5×0.8=16,
    当x=4时,y=5×2+(4﹣2)×5×0.8=18,
    故答案为2.5、5、7.5、10、12、14、16、18;
    (2)由题意可得,
    当0≤x≤2时,y=5x,
    当x>2时,y=5×2+(x﹣2)×5×0.8=4x+2,
    即付款金额关于购买量的函数解析式是:,
    相应的函数图象,如右图所示.
    本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,画出相应的函数图象.
    题号





    总分
    得分
    应聘者
    成绩
    项目
    A
    B
    C
    基本素质
    70
    65
    75
    专业知识
    65
    55
    50
    教学能力
    80
    85
    85
    摄氏温度(℃)

    0
    10

    华氏温度(℉)

    32
    50

    购买量/kg
    0.5
    1
    1.5
    2
    2.5
    3
    3.5
    4

    付款金额/元









    相关试卷

    北京市人民大附属中学2024年九上数学开学检测试题【含答案】:

    这是一份北京市人民大附属中学2024年九上数学开学检测试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    北京市海淀区清华大附中2025届数学九上开学学业水平测试模拟试题【含答案】:

    这是一份北京市海淀区清华大附中2025届数学九上开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年重庆市西南大附中数学九上开学学业水平测试模拟试题【含答案】:

    这是一份2024年重庆市西南大附中数学九上开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map