搜索
    上传资料 赚现金
    英语朗读宝

    北京西城北师大附属实验中学2025届数学九上开学联考试题【含答案】

    北京西城北师大附属实验中学2025届数学九上开学联考试题【含答案】第1页
    北京西城北师大附属实验中学2025届数学九上开学联考试题【含答案】第2页
    北京西城北师大附属实验中学2025届数学九上开学联考试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京西城北师大附属实验中学2025届数学九上开学联考试题【含答案】

    展开

    这是一份北京西城北师大附属实验中学2025届数学九上开学联考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①BE=DF;②∠AEB=75°;③CE=2;④S正方形ABCD=2+,其中正确答案是( )
    A.①②B.②③C.①②④D.①②③
    2、(4分)下列任务中,适宜采用普查方式的是( )
    A.调查某地的空气质量B.了解中学生每天的睡眠时间
    C.调查某电视剧在本地区的收视率D.了解某一天本校因病缺课的学生数
    3、(4分)在平面直角坐标系中,点P(2,﹣3)关于y轴对称的点的坐标是( )
    A.(﹣2,﹣3)B.(﹣2,3)C.(2,3)D.(2,﹣3)
    4、(4分)如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE,CF交于点D,则下列结论中不正确的是( )
    A.△ABE≌△ACFB.点D在∠BAC的平分线上
    C.△BDF≌△CDED.D是BE的中点
    5、(4分)关于x的分式方程=1的解为正数,则字母a的取值范围为( )
    A.a≥﹣1B.a>﹣1C.a≤﹣1D.a<﹣1
    6、(4分)计算的结果是( )
    A.0B.1C.2 D.2 
    7、(4分)已知点M的坐标为(3,﹣4),则与点M关于x轴和y轴对称的M1、M2的坐标分别是( )
    A.(3,4),(3,﹣4) B.(﹣3,﹣4),(3,4)
    C.(3,﹣4),(﹣3,﹣4) D.(3,4),(﹣3,﹣4)
    8、(4分)某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x元,则得到方程( )
    A.=25%B.150﹣x=25%C.x=150×25%D.25%x=150
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)元旦期间,张老师开车从汕头到相距150千米的老家探亲,如果油箱里剩余油量(升)与行驶里程 (千米)之间是一次函数关系,其图象如图所示,那么张老师到达老家时,油箱里剩余油量是_______升.
    10、(4分)矩形的长和宽是关于的方程的两个实数根,则此矩形的对角线之和是________.
    11、(4分)如图,在平面直角坐标系中,等边三角形ABC的顶点B,C的坐标分别为(1,0),(3,0),过坐标原点O的一条直线分别与边AB,AC交于点M,N,若OM=MN,则点M的坐标为______________.
    12、(4分)已知一次函数经过,且与y轴交点的纵坐标为4,则它的解析式为______.
    13、(4分)化简:=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知一次函数的图象经过A(-2,-3),B(1,3)两点.
    (1)求这个一次函数的解析式;
    (2)试判断点P(-1,1)是否在这个一次函数的图象上;
    (3)求此函数与x轴、y轴围成的三角形的面积.
    15、(8分)先化简,再求值:,其中,.
    16、(8分)为了迎接“六一”国际儿童节,某童装品牌专卖店准备购进甲、乙两种童装,这两种童装的进价和售价如下表:
    如果用5000元购进甲种童装的数量与用6000元购进乙种童装的数量相同.
    (1)求m的值;
    (2)要使购进的甲、乙两种童装共200件的总利润(利润=售价﹣进价)不少于8980元,且甲种童装少于100件,问该专卖店有哪几种进货方案?
    17、(10分)如图,在梯形,,过点,垂足为,并延长,使,联结.
    (1)求证:四边形是平行四边形。
    (2)联结,如果
    18、(10分)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且
    AB=DE,∠A=∠D,AF=DC.
    (1)求证:四边形BCEF是平行四边形,
    (2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是____.
    20、(4分)要使分式有意义,x需满足的条件是 .
    21、(4分)若直线y=kx+b中,k<0,b>0,则直线不经过第_____象限.
    22、(4分)已知一组数据11、17、11、17、11、24共六个数,那么数11在这组数据中的频率是______.
    23、(4分)请观察一列分式:﹣,﹣,…则第11个分式为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)甲、乙两位运动员在相同条件下各射靶10次,毎次射靶的成绩情况如图.
    (1)请填写下表:
    (2)请你从平均数和方差相结合对甲、乙两名运动员6次射靶成绩进行分析:
    (3)教练根据两人的成绩最后选择乙去参加比赛,你能不能说出教练让乙去比赛的理由?(至少说出两条理由)
    25、(10分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
    (1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
    (2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
    26、(12分)如图,正方形网格中每个小正方形边长都是,图中标有、、、、、、共个格点(每个小格的顶点叫做格点)

    (1)从个格点中选个点为顶点,在所给网格图中各画出-一个平行四边形:
    (2)在(1)所画的平行四边形中任选-一个,求出其面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    证明Rt△ABE≌Rt△ADF,根据全等三角形的性质得到BE=DF;根据等腰直角三角形的性质、等边三角形的性质求出∠AEB;根据等腰直角三角形的性质求出CE;根据勾股定理求出正方形的边长.
    【详解】
    ∵四边形ABCD是正方形,
    ∴AB=AD,
    ∵△AEF是等边三角形,
    ∴AE=AF,
    在Rt△ABE和Rt△ADF中,

    ∴Rt△ABE≌Rt△ADF(HL),
    ∴BE=DF,①说法正确;
    ∵CB=CD,BE=DF,
    ∴CE=CF,即△ECF是等腰直角三角形,
    ∴∠CEF=45°,
    ∵∠AEF=60°,
    ∴∠AEB=75°,②说法正确;
    如图,∵△CEF为等腰直角三角形,EF=2,
    ∴CE=,③说法错误;
    设正方形的边长为a,则DF=a-,
    在Rt△ADF中,
    AD2+DF2=AF2,即a2+(a-)2=4,
    解得a=或a=(舍去),
    则a2=2+,即S正方形ABCD=2+,④说法正确,
    故选C.
    本题考查的是正方形的性质、全等三角形的判定和性质,解答本题的关键是熟练掌握全等三角形的证明.
    2、D
    【解析】
    调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
    【详解】
    A. 调查某地的空气质量,由于范围广,应当使用抽样调查,故本选项错误;
    B. 了解中学生每天的睡眠时间,由于人数多,不易全面掌握所有的人,故应当采用抽样调查;
    C. 调查某电视剧在本地区的收视率,人数较多,不便测量,应当采用抽样调查,故本选项错误;
    D. 了解某一天本校因病缺课的学生数,人数少,耗时短,应当采用全面调查的方式,故本选项正确。
    故选D.
    此题考查全面调查与抽样调查,解题关键在于掌握调查方法.
    3、A
    【解析】
    根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
    【详解】
    解:点P(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3),
    故选:A.
    此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.
    4、D
    【解析】
    根据全等三角形的判定对各个选项进行分析,从而得到答案.做题时,要结合已知条件与三角形全等的判定方法逐个验证.
    【详解】
    ∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A
    ∴△ABE≌△ACF(AAS),正确;
    ∵△ABE≌△ACF,AB=AC
    ∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°
    ∴DF=DE故点D在∠BAC的平分线上,正确;
    ∵△ABE≌△ACF,AB=AC
    ∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°
    ∴△BDF≌△CDE(AAS),正确;
    D. 无法判定,错误;
    故选D.
    5、B
    【解析】
    解:分式方程去分母得:2x-a=x+1,解得:x=a+1.
    根据题意得:a+1>3且a+1+1≠3,解得:a>-1且a≠-2.
    即字母a的取值范围为a>-1.故选B.
    点睛:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为3.
    6、B
    【解析】
    根据零指数幂的意义即可解答.
    【详解】
    .
    本题主要考查了零指数幂的意义,记住任何非零数的零指数幂等于1是解答本题的关键.
    7、D
    【解析】
    直接利用关于x,y轴对称点的性质分别得出答案.
    【详解】
    ∵点M的坐标为(3,﹣4),∴与点M关于x轴和y轴对称的M1、M2的坐标分别是:(3,4),(﹣3,﹣4).
    故选D.
    本题考查了关于x,y轴对称点的性质,正确掌握横纵坐标的关系是解题的关键.
    8、A
    【解析】
    由利润率=利润÷成本=(售价﹣成本)÷成本可得等量关系为:(售价﹣成本)÷成本=25%.
    【详解】
    解:由题意可得=25%.
    故选A.
    此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、20
    【解析】
    先运用待定系数法求出y与x之间的函数关系式,然后把x=150代入解析式就可以求出y的值,从而得出剩余的油量.
    【详解】
    解:设y与x之间的函数关系式为y=kx+b,由函数图象,得

    解得: ,
    则y=﹣0.1x+1.
    当x=150时,
    y=﹣0.1×150+1=20(升).
    故答案为20
    本题考查了一次函数的应用,正确读懂函数图像,利用待定系数法求函数解析式并代入求值是解题的关键.
    10、1
    【解析】
    设矩形的长和宽分别为a、b,根据根与系数的关系得到a+b=7,ab=12,利用勾股定理得到矩形的对角线长=,再利用完全平方公式和整体代入的方法可计算出矩形的对角线长为5,则根据矩形的性质得到矩形的对角线之和为1.
    【详解】
    设矩形的长和宽分别为a、b,
    则a+b=7,ab=12,
    所以矩形的对角线长==5,
    所以矩形的对角线之和为1.
    故答案为:1.
    本题考查了根与系数的关系, 矩形的性质,解题关键在于掌握运算公式.
    11、 (,)
    【解析】
    ∵B(1,0),C(3,0),
    ∴OB=1,OC=3,
    ∴BC=2,
    过点N作EN∥OC交AB于E,过点A作AD⊥BC于D,NF⊥BC于F,
    ∴∠ENM=∠BOM,
    ∵OM=NM,∠EMN=∠BMO,
    ∴△ENM≌△BOM,
    ∴EN=OB=1,
    ∵△ABC是正三角形,
    ∴AD=,BD=BC=1,
    ∴OD=2,
    ∴A(2,),
    ∴△AEN也是正三角形,
    ∴AN=EN=1,
    ∴AN=CN,
    ∴N,
    ∴M(,)
    故答案为(,)
    12、y=2x+1.
    【解析】
    用待定系数法,把(﹣1,2),(0,1)分别代入y=kx+b,可求得k,b.
    【详解】
    解:把(﹣1,2),(0,1)分别代入y=kx+b得,

    解得,
    所以,y=2x+1.
    故答案为y=2x+1.
    本题考核知识点:待定系数法求一次函数解析式. 解题关键点:掌握求函数解析式的一般方法.
    13、-6
    【解析】
    根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:
    【详解】
    ,
    故答案为-6
    三、解答题(本大题共5个小题,共48分)
    14、 (1) y=2x+1;(2)不在;(3)0.25.
    【解析】
    (1)用待定系数法求解函数解析式;
    (2)将点P坐标代入即可判断;
    (3)求出函数与x轴、y轴的交点坐标,后根据三角形的面积公式即可求解.
    【详解】
    解答:
    (1)设一次函数的表达式为y=kx+b,
    则-3=-2k+b、3=k+b,解得:k=2,b=1.
    ∴函数的解析式为:y=2x+1.
    (2)将点P(-1,1)代入函数解析式,1≠-2+1,
    ∴点P不在这个一次函数的图象上.
    (3)当x=0,y=1,当y=0,x=,
    此函数与x轴、y轴围成的三角形的面积为:
    15、;.
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.
    【详解】
    解:(-)÷
    =
    =
    =
    =,
    当a=+,b=-时,
    原式===.
    本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的计算方法.
    16、(1)m=100(2)两种方案
    【解析】
    (1)用总价除以单价表示出购进童装的数量,根据两种童装的数量相等列出方程求解即可;
    (2)设购进甲种童装x件,表示出乙种童装(200-x)件,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据童装的件数是正整数解答;设总利润为W,表示出利润,求得最值即可.
    【详解】
    (1)根据题意可得:,
    解得:m=100,
    经检验m=100是原方程的解;
    (2)设甲种童装为x件,可得:,
    解得:98≤x<100,
    因为x取整数,
    所以有两种方案:
    方案一:甲98,乙102;
    方案二:甲99,乙101;
    本题考查了分式方程的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系,解决问题.
    17、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)连接BD,证△ABC≌△DCB,得∠ACB=∠DBC.由中垂线性质得BD=BF,∠DBC=∠FBC,
    再证得AC=BF,∠ACB=∠CBF,由AC,BF平行且相等可证得四边形是平行四边形.
    (2)由BF=DF=BD证得三角形BDF是等边三角形,可得,再由平行线性质和等腰三角形性质证,可得,由(1)可得
    【详解】证明:(1)连结BD.
    ∵梯形ABCD中,AD∥BC,AB=DC,
    ∴AC=BD,
    ∵△ABC和△DCB中,AB=DC,AC=BD,BC=CB,
    ∴△ABC≌△DCB.
    ∴∠ACB=∠DBC.
    又∵DE⊥BC,EF=DE,
    ∴BD=BF,∠DBC=∠FBC,
    ∴AC=BF,∠ACB=∠CBF,
    ∴AC∥BF,
    ∴四边形ABFC是平行四边形;
    (2)
    ,
    四边形ABFC是平行四边形
    【点睛】本题考核知识点:梯形,平行四边形和矩形的判定.解题关键点:熟记平行四边形和矩形的判定条件.
    18、(1)见解析
    (2)当AF=时,四边形BCEF是菱形.
    【解析】
    (1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形.
    (2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.
    【详解】
    (1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.
    ∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,
    ∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.
    ∴四边形BCEF是平行四边形.
    (2)解:连接BE,交CF与点G,
    ∵四边形BCEF是平行四边形,
    ∴当BE⊥CF时,四边形BCEF是菱形.
    ∵∠ABC=90°,AB=4,BC=3,
    ∴AC=.
    ∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.
    ∴,即.∴.
    ∵FG=CG,∴FC=2CG=,
    ∴AF=AC﹣FC=5﹣.
    ∴当AF=时,四边形BCEF是菱形.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    试题解析:∵菱形ABCD的对角线AC=6,BD=8,
    ∴菱形的面积S=AC•BD=×8×6=1.
    考点:菱形的性质.
    20、x≠1
    【解析】
    试题分析:分式有意义,分母不等于零.
    解:当分母x﹣1≠0,即x≠1时,分式有意义.
    故答案是:x≠1.
    考点:分式有意义的条件.
    21、【解析】
    ∵k<0,b>0,∴直线y=kx+b经过第一、二、四象限,
    故答案为一、二、四.
    22、0.1
    【解析】
    根据公式:频率=即可求解.
    【详解】
    解:11的频数是3,则频率是:=0.1.
    故答案是:0.1.
    本题考查了频率公式:频率=,理解公式是关键.
    23、
    【解析】
    分母中y的次数是分式的序次的2倍加1,分子中x的次数与序次一致,分式的序次为奇数时,分式的符合为负,分式的序次为偶数时,分式的符合为正,由此即可解决问题.
    【详解】
    根据规律可知:则第11个分式为﹣.
    故答案为﹣.
    本题考查了分式的定义:叫分式,其中A、B都是整式,并且B中含有字母.也考查了从特殊到一般的规律的探究.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)甲的成绩比乙稳定;(1)见解析
    【解析】
    (1)根据中位数、平均数的概念计算;
    (2)从平均数和方差相结合看,方差越小的越成绩越好;
    (1)根据题意,从平均数,中位数两方面分析即可.
    【详解】
    解:(1) :(1)通过折线图可知:
    甲的环数按从小到大排列是5、6、6、7、7、7、7、8、8、9,
    则数据的中位数是(7+7)÷2=7;
    的平均数=(2+4+6+7+8+7+8+9+9+10)=7;
    乙命中9环以上的次数(包括9环)为1.
    填表如下:
    (2)因为平均数相同,
    所以甲的成绩比乙稳定.
    (1)理由1:因为平均数相同,命中9环以上的次数甲比乙少,所以乙的成绩比甲好些;
    理由2:因为平均数相同,甲的中位数小于乙的中位数,所以乙的成绩比甲好些;
    理由1:甲的成绩在平均数上下波动;而乙处于上升势头,从第4次以后就没有比甲少的情况发生,乙较有潜力.
    本题考查了折线统计图.读懂统计图,从统计图中得到必要的信息是解决问题的关键.也考查了中位数、平均数和方差的概念.在实际生活中常常用它们分析问题.
    25、(1)当天该水果的销售量为2千克;(2)如果某天销售这种水果获利150元,该天水果的售价为3元.
    【解析】
    (1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;
    (2)根据总利润每千克利润销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.
    【详解】
    (1)设y与x之间的函数关系式为y=kx+b,
    将(22.6,34.8)、(24,32)代入y=kx+b,
    ,解得:,
    ∴y与x之间的函数关系式为y=﹣2x+1.
    当x=23.5时,y=﹣2x+1=2.
    答:当天该水果的销售量为2千克.
    (2)根据题意得:(x﹣20)(﹣2x+1)=150,
    解得:x1=35,x2=3.
    ∵20≤x≤32,
    ∴x=3.
    答:如果某天销售这种水果获利150元,那么该天水果的售价为3元.
    本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.
    26、(1)见解析;(2)见解析
    【解析】
    (1)根据平行四边形的性质即可得到结论;
    (2)根据平行四边形的面积公式计算即可得到结论.
    【详解】
    解:(1)如图所示,平行四边形ACEG和平行四边形BFGD即为所求;
    (2)菱形DBFG面积=
    =
    =12
    或平行四边形面积=
    =15
    本题考查了作图——应用与设计作图,解此类题目首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.
    题号





    总分
    得分
    价格


    进价(元/件)
    m
    m+20
    售价(元/件)
    150
    160
    平均数
    方差
    中位数
    命中9环以上的次数(包括9环)

    7
    1.2
    1

    5.4
    7.5
    销售量y(千克)

    34.8
    32
    29.6
    28

    售价x(元/千克)

    22.6
    24
    25.2
    26

    平均数
    方差
    中位数
    命中9环以上的次数(包括9环)

    7
    1.2
    7
    1

    7
    5.4
    7.5
    1

    相关试卷

    北京市西城区北京师范大附属中学2024-2025学年九上数学开学监测模拟试题【含答案】:

    这是一份北京市西城区北京师范大附属中学2024-2025学年九上数学开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    北京师范大附属实验中学2025届九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份北京师范大附属实验中学2025届九上数学开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    北京师大附属实验中学2024年数学九上开学达标检测试题【含答案】:

    这是一份北京师大附属实验中学2024年数学九上开学达标检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map