搜索
    上传资料 赚现金
    英语朗读宝

    北京西城区北京八中学2024年数学九年级第一学期开学预测试题【含答案】

    北京西城区北京八中学2024年数学九年级第一学期开学预测试题【含答案】第1页
    北京西城区北京八中学2024年数学九年级第一学期开学预测试题【含答案】第2页
    北京西城区北京八中学2024年数学九年级第一学期开学预测试题【含答案】第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京西城区北京八中学2024年数学九年级第一学期开学预测试题【含答案】

    展开

    这是一份北京西城区北京八中学2024年数学九年级第一学期开学预测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)计算的结果是( )
    A.2B.C.D.-2
    2、(4分)分式方程的解是( ).
    A.x=-5B.x=5C.x=-3D.x=3
    3、(4分)在下列条件中,能判定四边形为平行四边形的是( )
    A.两组对边分别平行B.一组对边平行且另一组对边相等
    C.两组邻边相等D.对角线互相垂直
    4、(4分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( )
    A.5元 B.10元 C.20元 D.10元或20元
    5、(4分)若点P(-1,3)在过原点的一条直线上,则这条直线所对应的函数解析式为( )
    A.y=-3xB.y=x
    C.y=3x-1D.y=1-3x
    6、(4分)如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为( )
    A.2B.2C.2+4D.2+4
    7、(4分)若x>y,则下列不等式中不一定成立的是( )
    A.x﹣1>y﹣1B.2x>2yC.x+1>y+1D.x2>y2
    8、(4分)如图,正方形的边长是4,在上,且,是边上的一动点,则周长的最小值是( )
    A.3B.4C.5D.6
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,已知正方形的边长为,则图中阴影部分的面积为__________.
    10、(4分)已知一组数据:0,2,x,4,5,这组数据的众数是 4,那么这组数据的平均数是_____.
    11、(4分)已知关于函数,若它是一次函数,则______.
    12、(4分)如图,在□ABCD中,对角线AC、BD相交于O,AC+BD=10,BC=3,则△AOD的周长为 .
    13、(4分)关于x的分式方程的解为非正数,则k的取值范围是____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)计算:2﹣1+|﹣1|﹣(π﹣1)0
    15、(8分)给出三个多项式:,请选择两个多项式进行加法运算,并把结果分解因式(写出两种情况).
    16、(8分)计算:,
    17、(10分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
    (1)甲乙两种图书的售价分别为每本多少元?
    (2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)
    18、(10分)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.
    (1)菱形ABCO的边长
    (2)求直线AC的解析式;
    (3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,
    ①当0<t<时,求S与t之间的函数关系式;
    ②在点P运动过程中,当S=3,请直接写出t的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为 .
    20、(4分)因式分解:3x3﹣12x=_____.
    21、(4分)方程的解为__________.
    22、(4分)若一次函数y=(m-1)x-m的图象经过第二、三、四象限,则的取值范围是______.
    23、(4分)数据2,0,1,9的平均数是__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,是平行四边形的对角线,,分别交于点.
    求证:.
    25、(10分)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:
    (1)直接写出y甲,y乙关于x的函数关系式;
    (2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?
    26、(12分)计算:
    解方程:.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据分式的混合运算法则进行计算即可得出正确选项。
    【详解】
    解:
    =2
    故选:A
    本题考查了分式的四则混合运算,熟练掌握运算法则是解本题的关键.
    2、A
    【解析】
    观察可得最简公分母是(x+1)(x-1),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.
    【详解】
    方程两边同乘以(x+1)(x-1),
    得3(x+1)=2(x-1),
    解得x=-5.
    经检验:x= -5是原方程的解.
    故选A..
    本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
    3、A
    【解析】
    根据平行四边形的判定定理逐个判断即可.
    【详解】
    A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;
    B、一组对边平行且另一组对边相等的四边形不一定是平行四边形,故本选项不符合题意;
    C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;
    D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;
    故选A.
    本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.
    4、C
    【解析】
    设每件衬衫应降价x元,则每天可销售(1+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.
    【详解】
    设每件衬衫应降价x元,则每天可销售(1+2x)件,
    根据题意得:(40-x)(1+2x)=110,
    解得:x1=10,x2=1.
    ∵扩大销售,减少库存,
    ∴x=1.
    故选C.
    本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
    5、A
    【解析】
    设这条过原点的直线的解析式为:y=kx,
    ∵该直线过点P(-1,3),
    ∴-k=3,即k=-3,
    ∴这条直线的解析式为:y=-3x.
    故选A.
    6、D
    【解析】
    由点A在反比例函数的图象上,设出点A的坐标,结合勾股定理可以表现出OA2=AB2+OB2,再根据反比例函数图象上点的坐标特征可得出AB•OB的值,根据配方法求出(AB+OB)2,由此即可得出AB+OB的值,结合三角形的周长公式即可得出结论.
    【详解】
    解:∵点A在函数y=(x>0)的图象上,
    ∴设点A的坐标为(n,)(n>0).
    在Rt△ABO中,∠ABO=90°,OA=1,
    ∴OA2=AB2+OB2,
    又∵AB•OB=•n=1,
    ∴(AB+OB)2=AB2+OB2+2AB•OB=12+2×1=21,
    ∴AB+OB=2,或AB+OB=-2(舍去).
    ∴C△ABO=AB+OB+OA=2+1.
    故答案为2+1.
    故选D.
    本题考查了反比例函数图象上点的坐标特征、完全平方公式以及三角形的周长,解题的关键是求出AB+OB的值.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用完全平方公式直接求出两直角边之和是关键.
    7、D
    【解析】
    根据不等式的性质逐一进行判断,选项A,在不等式x>y两边都减1,不等号的方向不变,即可判断A的正确性,选项B,在不等式x>y两边都乘上2,不等号的方向不变,即可判断B的正确性;选项C,在不等式x>y两边都加上1,不等号的方向不变,即可判断C的正确性,选项D,可举例说明,例如当x=1,y=-2时,x>y,但x2<y2,故可判断D的正确性,据此即可得到答案.
    【详解】
    A、不等式的两边减1,不等号的方向不变,故A不符合题意;
    B、不等式的两边乘2,不等号的方向不变,故B不符合题意;
    C、不等式的两边都加1,不等号的方向不变,故C不符合题意;
    D、当0<x<1,y<﹣1时,x2<y2,故D符合题意;
    故选D.
    本题主要考查了不等式的相关知识质,熟练掌握不等式的性质是解题的关键;
    8、D
    【解析】
    由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为使DN+MN最小的点,在Rt△BCM中利用勾股定理求出BM的长即可.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴点B与点D关于直线AC对称,
    连接BD,BM交AC于N′,连接DN′,则BM的长即为DN+MN的最小值,
    又CM=CD−DM=4−1=3,
    在Rt△BCM中,BM=,
    故△DMN周长的最小值=5+1=6,
    故选:D.
    本题考查的是轴对称−最短路线问题及正方形的性质,根据点B与点D关于直线AC对称,可知BM的长即为DN+MN的最小值是解答此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2
    【解析】
    正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.
    【详解】
    解:依题意有S阴影=×4×4=2cm1.
    故答案为:2.
    本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.
    10、3
    【解析】
    先根据众数的定义求出的值,再根据平均数的计算公式列式计算即可.
    【详解】
    解:,2,,4,5的众数是4,

    这组数据的平均数是;
    故答案为:3;
    此题考查了众数和平均数,根据众数的定义求出的值是本题的关键,众数是一组数据中出现次数最多的数.
    11、
    【解析】
    根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2,可得答案.
    【详解】
    由y=是一次函数,得
    m2-24=2且m-2≠0,
    解得m=-2,
    故答案为:-2.
    本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2.
    12、8
    【解析】试题分析:根据平行四边形的性质可得:OA+OD=(AC+BD)=5,AD=BC=3,则△AOD的周长为5+3=8.
    考点:平行四边形的性质.
    13、k≥1且k≠3.
    【解析】
    分式方程去分母转化为整式方程,由分式方程的解为非正数,确定出k的范围即可.
    【详解】
    去分母得:x+k+2x=x+1,
    解得:x=,
    由分式方程的解为非正数,得到⩽0,且≠−1,
    解得:k≥1且k≠3,
    故答案为k≥1且k≠3.
    本题考查的是分式方程,熟练掌握分式方程是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、
    【解析】
    按顺序先分别进行负指数幂的运算、绝对值的化简、0指数幂的运算,然后再进行加减运算即可.
    【详解】
    2﹣1+|﹣1|﹣(π﹣1)0
    =+1﹣1
    =.
    本题考查了实数的运算,涉及了负指数幂、0指数幂等运算,熟练掌握各运算的运算法则是解题的关键.
    15、答案不唯一,详见解析
    【解析】
    选择第一个与第二个,第一个与第三个,利用整式的加法运算法则计算,然后再利用提公因式法或平方差公式进行因式分解即可.
    【详解】
    情形一:
    情形二:
    此题主要考查了多项式的计算,以及分解因式,关键是正确求出多项式的和,找出公因式.
    16、5-2
    【解析】
    先根据绝对值、整数指数幂和二次根式的性质化简各数,然后进行加减即可得出答案。
    【详解】
    解:原式=2-1×1-2+4
    =5-2
    本题考查了实数的混合运算,熟练掌握运算法则是关键。
    17、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.
    【解析】
    (1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;
    (2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.
    【详解】
    (1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:

    解得:.
    经检验,是原方程的解.
    所以,甲种图书售价为每本元,
    答:甲种图书售价每本28元,乙种图书售价每本20元.
    (2)设甲种图书进货本,总利润元,则

    又∵,
    解得:.
    ∵随的增大而增大,
    ∴当最大时最大,
    ∴当本时最大,
    此时,乙种图书进货本数为(本).
    答:甲种图书进货533本,乙种图书进货667本时利润最大.
    本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.
    18、(1)5;(2)直线AC的解析式y=﹣x+;(3)见解析.
    【解析】
    (1)Rt△AOH中利用勾股定理即可求得菱形的边长;
    (2)根据(1)即可求的OC的长,则C的坐标即可求得,利用待定系数法即可求得直线AC的解析式;
    (3)根据S△ABC=S△AMB+S△BMC求得M到直线BC的距离为h,然后分成P在AM上和在MC上两种情况讨论,利用三角形的面积公式求解.
    【详解】
    (1)Rt△AOH中,

    所以菱形边长为5;
    故答案为5;
    (2)∵四边形ABCO是菱形,
    ∴OC=OA=AB=5,即C(5,0).
    设直线AC的解析式y=kx+b,函数图象过点A、C,得
    ,解得,
    直线AC的解析式;
    (3)设M到直线BC的距离为h,
    当x=0时,y=,即M(0,),,
    由S△ABC=S△AMB+SBMC=AB•OH=AB•HM+BC•h,
    ×5×4=×5×+×5h,解得h=,
    ①当0<t<时,BP=BA﹣AP=5﹣2t,HM=OH﹣OM=,
    S=BP•HM=×(5﹣2t)=﹣t+;
    ②当2.5<t≤5时,BP=2t﹣5,h=,
    S=BP•h=×(2t﹣5)=t﹣,
    把S=3代入①中的函数解析式得,3=﹣t+,
    解得:t=,
    把S=3代入②的解析式得,3=t﹣,
    解得:t=.
    ∴t=或.
    本题考查了待定系数法求一次函数的解析式以及菱形的性质,根据三角形的面积关系求得M到直线BC的距离h是关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(﹣2,2)
    【解析】
    试题分析:∵直线y=2x+4与y轴交于B点,
    ∴x=0时,
    得y=4,
    ∴B(0,4).
    ∵以OB为边在y轴右侧作等边三角形OBC,
    ∴C在线段OB的垂直平分线上,
    ∴C点纵坐标为2.
    将y=2代入y=2x+4,得2=2x+4,
    解得x=﹣2.
    所以C′的坐标为(﹣2,2).
    考点:2.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移.
    20、3x(x+2)(x﹣2)
    【解析】
    先提公因式3x,然后利用平方差公式进行分解即可.
    【详解】
    3x3﹣12x
    =3x(x2﹣4)
    =3x(x+2)(x﹣2),
    故答案为3x(x+2)(x﹣2).
    本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
    21、0
    【解析】
    先去分母转化为一次方程即可解答.
    【详解】
    解:原式去分母得1-x-(x+1)=0,
    得x=0.
    本题考查分式方程的解法,掌握步骤是解题关键.
    22、0<<1
    【解析】
    一次函数y=(m-1)x-m的图象经过第二、三、四象限,则一次项系数m-1是负数,-m是负数,即可求得m的范围.
    【详解】
    根据题意得:,
    解得:0<m<1,
    故答案为:0<m<1.
    本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
    23、1
    【解析】
    根据算术平均数的定义计算可得.
    【详解】
    数据2,0,1,9的平均数是=1,
    故答案是:1.
    考查算术平均数,解题的关键是掌握算术平均数的定义.
    二、解答题(本大题共3个小题,共30分)
    24、详见解析
    【解析】
    根据平行四边形的性质,证明全等即可证明结论.
    【详解】
    证明:四边形是平行四边形,
    ,.
    .
    .
    .
    .
    .
    本题主要考查平行四边形的性质定理,关键在于寻找全等的三角形.
    25、(1)y甲=0.8x(x≥0),;(2)当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.
    【解析】
    (1)利用待定系数法即可求出y甲,y乙关于x的函数关系式;
    (2)当0<x<2000时,显然到甲商店购买更省钱;当x≥2000时,分三种情况进行讨论即可.
    【详解】
    (1)设y甲=kx,把(2000,1600)代入,得2000x=1600,解得k=0.8,所以y甲=0.8x(x≥0);
    当0<x<2000时,设y乙=ax,把(2000,2000)代入,得2000x=2000,解得k=1,所以y乙=x;
    当x≥2000时,设y乙=mx+n,把(2000,2000),(4000,3400)代入,得: ,
    解得:.
    所以;
    (2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;
    当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;
    若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;
    若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;
    故当购买金额按原价小于6000元时,到甲商店购买更省钱;
    当购买金额按原价大于6000元时,到乙商店购买更省钱;
    当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.
    考点:一次函数的应用;分类讨论;方案型.
    26、(1);(2),.
    【解析】
    直接利用零指数幂的性质以及二次根式的性质分别化简得出答案;
    直接利用十字相乘法分解因式进而解方程得出答案.
    【详解】
    解:原式


    解得:,.
    此题主要考查了因式分解法解方程以及实数运算,正确掌握解题方法是解题关键.
    题号





    总分
    得分

    相关试卷

    北京十一学校2025届九年级数学第一学期开学预测试题【含答案】:

    这是一份北京十一学校2025届九年级数学第一学期开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届北京市西城区月坛中学九年级数学第一学期开学复习检测模拟试题【含答案】:

    这是一份2025届北京市西城区月坛中学九年级数学第一学期开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届北京市西城区名校数学九年级第一学期开学考试试题【含答案】:

    这是一份2025届北京市西城区名校数学九年级第一学期开学考试试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map