终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    福建省福州市仓山区2025届九年级数学第一学期开学综合测试模拟试题【含答案】

    立即下载
    加入资料篮
    福建省福州市仓山区2025届九年级数学第一学期开学综合测试模拟试题【含答案】第1页
    福建省福州市仓山区2025届九年级数学第一学期开学综合测试模拟试题【含答案】第2页
    福建省福州市仓山区2025届九年级数学第一学期开学综合测试模拟试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省福州市仓山区2025届九年级数学第一学期开学综合测试模拟试题【含答案】

    展开

    这是一份福建省福州市仓山区2025届九年级数学第一学期开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图像可以表示为中的( )
    A.B.C.D.
    2、(4分)下列从左边到右边的变形,是因式分解的是
    A.B.
    C.D.
    3、(4分)如图,已知函数y=ax+b和y=kx的图像交于点P,则根据图像可得关于x,y的二元一次方程组的解是( )
    A.B.C.D.
    4、(4分)如果a < b ,则下列式子错误的是( )
    A.a +7< b +7B.a ﹣5< b ﹣5
    C.﹣3 a <﹣3 bD.
    5、(4分)若二次根式有意义,则x的取值范围是( )
    A.x<2B.x≠2C.x≤2D.x≥2
    6、(4分)若点在反比例函数的图象上则的值是( )
    A.B.C.1. 5D.6
    7、(4分)函数的自变量x的取值范围是( )
    A.x≠0B.x≠1C.x≥1D.x≤1
    8、(4分)如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为
    ( )
    A.280B.140C.70D.196
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)直线的截距是__________.
    10、(4分)如图,菱形ABCD和菱形BEFG的边长分别是5和2,∠A=60°,连结DF,则DF的长为_____.
    11、(4分)若a4·ay=a19,则 y=_____________.
    12、(4分)如图,把Rt△ABC(∠ABC=90°)沿着射线BC方向平移得到Rt△DEF,AB=8,BE=5,则四边形ACFD的面积是________.
    13、(4分)如图,将绕点旋转一定角度得到,点的对应点恰好落在边上.若,,则________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:
    ()若商场预计进货款为元,则这两种台灯各购进多少盏?
    ()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
    15、(8分)某班进行了一次数学測验,将成绩绘制成频数分布表和频数直方图的一部分如下:
    (1)在频数分布表中,的值为________,的值为________;
    (2)将频数直方图补充完整;
    (3)成绩在分以上(含)的学生人数占全班总人数的百分比是多少?
    16、(8分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.△ABC的三个顶点都在格点上.
    ⑴ 在线段AC上找一点P(不能借助圆规),使得,画出点P的位置,并说明理由.
    ⑵ 求出⑴中线段PA的长度.
    17、(10分)已知:如图,梯形ABCD中,AD∥BC,∠B=60°,∠C=30°,AD=4,BC=10.求:梯形两腰AB、CD的长.
    18、(10分)ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.
    (1)画出ABC关于原点O的中心对称图形A1B1C1,并写出点A1的坐标;
    (2)将ABC绕点C顺时针旋转90得到A2B2C,画出A2B2C,求在旋转过程中,线段CA所扫过的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是_____.
    20、(4分)某一次函数的图象经过点(1,),且函数y的值随自变量x的增大而减小,请写出一个满足上述条件的函数关系式:______________.
    21、(4分)一组数据为0,1,2,3,4,则这组数据的方差是_____.
    22、(4分)已知反比例函数的图象与一次函数y=k(x﹣3)+2(k>0)的图象在第一象限交于点P,则点P的横坐标a的取值范围为___.
    23、(4分)如图所示的是用大小相同(黑白两种颜色)的正方形砖铺成的地板,一宝物藏在某一块正方形砖下面,宝物在白色区域的概率是 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知一次函数的图象经过点 和.
    (1)求该函数图像与x轴的交点坐标;
    (2)判断点是否在该函数图像上.
    25、(10分)已知a,b满足|a﹣|++(c﹣4)2=1.
    (1)求a,b,c的值;
    (2)判断以a,b,c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.
    26、(12分)如图,直线AB:y=﹣x﹣b分别与x、y轴交于A(6,0)、B两点.
    (1)求直线AB的解析式;
    (2)若P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发生变化?若不变,请求出它的坐标;如果变化,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.
    【详解】
    解:由题意,得
    y=30-5t,
    ∵y≥0,t≥0,
    ∴30-5t≥0,
    ∴t≤6,
    ∴0≤t≤6,
    ∴y=30-5t是降函数且图象是一条线段.
    故选B.
    本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.
    2、B
    【解析】
    根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法;因式分解的要求:分解要彻底,小括号外不能含整式加减形式.
    【详解】
    A选项,利用提公因式法可得: ,因此A选项错误,
    B选项,根据立方差公式进行因式分解可得:,因此B选项正确,
    C选项,不属于因式分解,
    D选项,利用提公因式法可得:,因此D选项错误,
    故选B.
    本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.
    3、B
    【解析】
    函数y=ax+b和y=kx的图象交于点P(−4,−2),
    即x=−4,y=−2同时满足两个一次函数的解析式。
    所以关于x,y的方程组的解是: x= - 4 , y= - 2.
    故选B.
    点睛:由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
    4、C
    【解析】
    根据不等式的性质,逐项判断即可.
    【详解】
    解:∵a<b,∴a+7<b+7,故选项A不符合题意;
    ∵a<b,∴a-5<b-5,故选项B不符合题意;
    ∵a<b,∴-3a>-3b,故选项C符合题意;
    ∵a<b,∴,故选项D不符合题意.
    故选:C.
    此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.
    5、C
    【解析】
    二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.
    【详解】
    由题意得:1-x≥0,
    解得:x≤1.
    故选C.
    本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.
    6、A
    【解析】
    将A的坐标代入反比例函数进行计算,可得答案.
    【详解】
    将A(﹣2,3)代入反比例函数,得k=﹣2×3=﹣6,故选:A.
    本题考查反比例函数,解题的关键是将点A代入反比例函数.
    7、B
    【解析】
    根据题意若函数y=有意义,可得x-1≠0;
    解得x≠1;故选B
    8、C
    【解析】
    解:设小长方形的长、宽分别为x、y,
    依题意得:,
    解得:,
    则矩形ABCD的面积为7×2×5=1.
    故选C.
    【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-5
    【解析】
    根据截距的定义:直线方程y=kx+b中,b就是截距解答即可.
    【详解】
    直线的截距是−5.
    故答案为:−5.
    此题考查一次函数图象,解题关键在于掌握一次函数图象上点的坐标特征.
    10、
    【解析】
    延长FG交AD于点M,过点D作DH⊥AB交AB于点H,交GF的延长线于点N,由菱形的性质和勾股定理再结合已知条件可求出NF,DN的长,在直角三角形DNF中,再利用勾股定理即可求出DF的长.
    【详解】
    延长FG交AD于点M,过点D作DH⊥AB交AB于点H,交GF的延长线于点N,
    ∵四边形ABCD和四边形BEFG都是菱形,
    ∴GF∥BE,EF∥AM,
    ∴四边形AMFE是平行四边形,
    ∴AM=EF=2,MF=AE=AB+BE=5+2=7,
    ∴DM=AD﹣AM=5﹣2=3,
    ∵∠A=60°,
    ∴∠DAH=30°,
    ∴MN=DM=,
    ∴DN==,NF=MF﹣MN=,
    在Rt△DNF中,DF==,
    故答案为:.
    本题考查了菱形的性质、平行四边形的判定和性质、含30°直角三角形的性质以及勾股定理的运用,正确作出图形的辅助线是解题的关键.
    11、1
    【解析】
    利用同底数幂相乘,底数不变指数相加计算,再根据指数相同列式求解即可.
    【详解】
    解: a4•ay=a4+y=a19,∴4+y=19,解得y=1
    故答案为:1.
    本题主要考查同底数幂相乘,底数不变指数相加的性质,熟练掌握性质是解题的关键.
    12、40
    【解析】
    根据平移的性质可得CF=BE=5,然后根据平行四边形的面积公式即可解答.
    【详解】
    由平移的性质可得:CF=BE=5,
    ∵AB⊥BF,
    ∴四边形ACFD的面积为:AB·CF=8×5=40,
    故答案为40.
    本题考查了平移的性质和平行四边形面积公式,掌握平移的性质和平行四边形面积公式是解题的关键.
    13、1
    【解析】
    利用含30度的直角三角形三边的关系得到BC=1AB=4,再根据旋转的性质得AD=AB,则可判断△ABD为等边三角形,所以BD=AB=1,然后计算BC-BD即可.
    【详解】
    解:∵∠BAC=90°,∠B=60°,
    ∴BC=1AB=4,
    ∵Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,
    ∴AD=AB,
    而∠B=60°,
    ∴△ABD为等边三角形,
    ∴BD=AB=1,
    ∴CD=BC-BD=4-1=1.
    故答案为:1.
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
    三、解答题(本大题共5个小题,共48分)
    14、(1)购进型台灯盏,型台灯25盏;
    (2)当商场购进型台灯盏时,商场获利最大,此时获利为元.
    【解析】
    试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.
    试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,
    根据题意得,30x+50(100﹣x)=3500,
    解得x=75,
    所以,100﹣75=25,
    答:应购进A型台灯75盏,B型台灯25盏;
    (2)设商场销售完这批台灯可获利y元,
    则y=(45﹣30)x+(70﹣50)(100﹣x),
    =15x+2000﹣20x,
    =﹣5x+2000,
    ∵B型台灯的进货数量不超过A型台灯数量的3倍,
    ∴100﹣x≤3x,
    ∴x≥25,
    ∵k=﹣5<0,
    ∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)
    答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
    考点:1.一元一次方程的应用;2.一次函数的应用.
    15、(1)10,0.1;(2)答案见解析;(3)占全班总人数百分比为.
    【解析】
    (1)先计算参加数学測验的总人数,根据a=总人数-各分数段的人的和计算即可得解,b=1-各分数段的频率的和计算即可得解;
    (2)根据(1)补全直方图;
    (3)求出成绩在分以上(含)的学生人数除以总人数即可.
    【详解】
    (1)∵参加数学測验的总人数为:
    ∴,
    (2) 如图:该直方图为所求作.
    .
    (3)成绩在分以上的学生人数为人,全班总人数为人,
    占全班总人数百分比为
    本题考查了频数(率)分布直方图及频数(率)分布表;概率公式,掌握频数分布直方图及频数分布表是解题的关键
    16、 (1)详见解析;(2)线段PA的长度为.
    【解析】
    试题分析:
    (1)利用方格纸可作出BC的垂直平分线交AC于点P,点P为所求的点,由线段垂直平分线的性质和勾股定理即可证明此时:PC2-PA2=AB2;
    (2)由图中信息可得AB=4,AC=6,设PA=,则PC=PB=6-,在Rt△PAB中,由勾股定理建立方程解出即可.
    试题解析:
    ⑴ 如图,利用方格纸作BC的垂直平分线,分别交AC、BC于点P、Q,则PC=PB.
    ∵在△APB中,∠A=90°,
    ∴,即: ,
    ∴ .
    ⑵ 由图可得:AC=6,AB=4,设PA=x,则PB=PC=6-x
    ∵在△PAB中,∠A=90°,
    ∴ ,解得:,即PA=.
    答:线段PA的长度为.
    17、AB=3,CD=3.
    【解析】
    平移一腰,得到平行四边形和30°的直角三角形,根据它们的性质进行计算.
    【详解】
    解:作DE∥AB交BC于点E,则四边形ABED是平行四边形.
    ∴AB=DE,AD=BE,∠DEC=∠B=60°,
    ∵∠C=30°,
    ∴∠EDC=180°-60°-30°=90°,
    ∵CE=BC-BE=BC-AD=6,
    ∴DE=3,CD=3,
    即AB=3,CD=3.
    故答案为:AB=3,CD=3.
    本题考查与梯形有关的问题,平移一腰是梯形中常见的辅助线,再根据平行四边形的性质和三角形的性质进行分析.
    18、(1)图见解析,A1(2,-4);(2)图见解析,面积为
    【解析】
    (1)根据网格结构找出点A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;
    (2)根据网格结构找出点A、B绕点C顺时针旋转90°的对应点A2、B2的位置,然后顺次连接即可;利用勾股定理列式求出AC,再根据扇形面积公式列式计算即可得解.
    【详解】
    解:(1)△A1B1C1如图所示,A1(2,-4);
    (2)△A2B2C如图所示,由勾股定理得,
    线段CA所扫过的图形是一个扇形,
    其面积为:.
    本题考查了利用旋转变换作图,勾股定理,扇形面积公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度
    【详解】
    ∵四边形ABCD是菱形,
    ∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,
    ∴BC==5cm,
    ∴S菱形ABCD==×6×8=24cm2,
    ∵S菱形ABCD=BC×AE,
    ∴BC×AE=24,
    ∴AE=cm.
    故答案为: cm.
    此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
    20、y=-x-1(答案不唯一).
    【解析】
    根据y随着x的增大而减小推断出k<1的关系,再利用过点(1,-2)来确定函数的解析式.
    【详解】
    解:设一次函数解析式为y=kx+b,
    ∵一次函数y随着x的增大而减小,
    ∴k<1.
    又∵直线过点(1,-2),
    ∴解析式可以为:y=-x-1等.
    故答案为:y=-x-1(答案不唯一).
    此题主要考查了一次函数的性质,得出k的符号进而求出是解题关键.本题是开放题,答案不唯一。
    21、1.
    【解析】
    先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.
    【详解】
    这组数据的平均数是:,
    则方差;
    故答案为:1.
    此题考查方差,解题关键在于掌握运算法则
    22、2<a<1.
    【解析】
    先确定一次函数图象必过点(1,2),根据k>0得出直线必过一、三象限,继而结合图象利用数形结合思想即可得出答案.
    【详解】
    当x=1时,y=k(1﹣1)+2=2,
    即一次函数过点(1,2),
    ∵k>0,
    ∴一次函数的图象必过一、三象限,
    把y=2代入y=,得x=2,
    观察图象可知一次函数的图象和反比例函数y=图象的交点的横坐标大于2且小于1,
    ∴2<a<1,
    故答案为:2<a<1.
    本题考查了反比例函数与一次函数的交点问题,熟练掌握相关知识并正确运用数形结合思想是解题的关键.
    23、.
    【解析】
    解:根据图示可得:总的正方形有9个,白色的正方形有5个,
    则宝物在白色区域的概率是:.
    故答案为
    二、解答题(本大题共3个小题,共30分)
    24、(1)(2,0);(2)点不在该函数图像上.
    【解析】
    (1)设一次函数解析式为y=kx+b,把已知两点坐标代入求出k与b的值,即可确定出解析式,然后令y=0,解出x,即可求得交点;
    (2)将x=-3代入解析式计算y的值,与6比较即可.
    【详解】
    解:(1)设一次函数解析式为y=kx+b,
    把 和代入解析式得:,解得:,
    ∴一次函数解析式为,
    令y=0,则,解得:,
    ∴该函数图像与x轴的交点坐标为(2,0);
    (2)将x=-3代入解析式得:,
    ∵,
    ∴点不在该函数图像上.
    此题考查了待定系数法求一次函数解析式,以及一次函数图像上点的坐标特征,熟练掌握待定系数法是解本题的关键.
    25、(1)a=,b=5,c=4;(2)
    【解析】
    (1)根据非负数的性质得到方程,解方程即可得到结果;
    (2)根据三角形的三边关系,勾股定理的逆定理判断即可.
    【详解】
    (1)∵a,b,c满足|a-|++(c-4)2=1,
    ∴|a-|=1,=1,(c-4)2=1,
    解得a=,b=5,c=4.
    (2)∵a=,b=5,c=4,
    ∴a+b=+5>4.
    ∴以a,b,c为边能构成三角形.
    ∵a2+b2=()2+52=32=(4)2=c2,
    ∴此三角形是直角三角形.
    本题考查了勾股定理的逆定理,非负数的性质,熟练掌握勾股定理的逆定理是解题的关键.
    26、(1)y=﹣x+6;(2)不变化,K(0,-6)
    【解析】
    (1)根据点A的坐标,利用待定系数法可求出直线AB的解析式;
    (2)过点Q作QH⊥x轴于点H,易证△BOP≌△PHQ,利用全等三角形的性质可得出OB=HP,OP=HQ,两式相加得PH+PO=BO+QH,即OA+AH=BO+QH,又OA=OB,可得AH=QH,即△AHQ是等腰直角三角形,进而证得△AOK为等腰直角三角形,求出OK=OA=6,即可得出K点的坐标.
    【详解】
    解:(1)将A(6,0)代入y=-x-b,得:-6-b=0,
    解得:b=-6,
    ∴直线AB的解析式为y=-x+6;
    (2)不变化,K(0,-6)
    过Q作QH⊥x轴于H,
    ∵△BPQ是等腰直角三角形,
    ∴∠BPQ=90°,PB=PQ,
    ∵∠BOA=∠QHA=90°,
    ∴∠BPO=∠PQH,
    ∴△BOP≌△HPQ,
    ∴PH=BO,OP=QH,
    ∴PH+PO=BO+QH,
    即OA+AH=BO+QH,
    又OA=OB,
    ∴AH=QH,
    ∴△AHQ是等腰直角三角形,
    ∴∠QAH=45°,
    ∴∠OAK=45°,
    ∴△AOK为等腰直角三角形,
    ∴OK=OA=6,
    ∴K(0,-6).
    本题考查了待定系数法求一次函数解析式、全等三角形的判定与性质以及等腰三角形的判定,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)利用全等三角形的性质及等腰三角形的判定得出△AOK是等腰三角形.
    题号





    总分
    得分
    批阅人
    成绩
    频数(人数)
    频率

    相关试卷

    2024年福建省福州市华伦中学九年级数学第一学期开学调研模拟试题【含答案】:

    这是一份2024年福建省福州市华伦中学九年级数学第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省福州市仓山区时代华威中学2024-2025学年九年级上学期开学考试数学试题(解析版):

    这是一份福建省福州市仓山区时代华威中学2024-2025学年九年级上学期开学考试数学试题(解析版),共23页。试卷主要包含了 抛物线的顶点在等内容,欢迎下载使用。

    2024-2025学年福建省福州市名校数学九年级第一学期开学检测模拟试题【含答案】:

    这是一份2024-2025学年福建省福州市名校数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map