搜索
    上传资料 赚现金
    英语朗读宝

    福建省福州市十中学2024年九上数学开学监测模拟试题【含答案】

    福建省福州市十中学2024年九上数学开学监测模拟试题【含答案】第1页
    福建省福州市十中学2024年九上数学开学监测模拟试题【含答案】第2页
    福建省福州市十中学2024年九上数学开学监测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省福州市十中学2024年九上数学开学监测模拟试题【含答案】

    展开

    这是一份福建省福州市十中学2024年九上数学开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列函数中,正比例函数是( )
    A.y=B.y=−C.y=x+4D.y=x2
    2、(4分)关于函数的图象,下列结论错误的是( )
    A.图象经过一、二、四象限
    B.与轴的交点坐标为
    C.随的增大而减小
    D.图象与两坐标轴相交所形成的直角三角形的面积为
    3、(4分)在分式(a,b为正数)中,字母a,b值分别扩大为原来的3倍,则分式的值( )
    A.不变B.缩小为原来的
    C.扩大为原来的3倍D.不确定
    4、(4分)二次根式在实数范围内有意义, 则x的取值范围是( )
    A.x≥-3B.x≠3C.x≥0D.x≠-3
    5、(4分)关于x的一元二次方程的两实数根分别为、,且,则m的值为( )
    A.B.C.D.0
    6、(4分)如图,在△ABC中,点D、E分别是AB、AC的中点,下列结论不正确的是( )
    A.DE∥BCB.BC=2DEC.DE=2BCD.∠ADE=∠B
    7、(4分)如图,四边形ABCD是长方形,AB=3,AD=1.已知A(﹣,﹣1),则点C的坐标是( )
    A.(﹣3,)B.(,﹣3)C.(3,)D.(,3)
    8、(4分)某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)
    35 38 42 44 40 47 45 45
    则这组数据的中位数、平均数分别是( )
    A.42、42B.43、42C.43、43D.44、43
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,正方形ABCD的边长为4,P为对角线AC上一点,且CP = 3,PE⊥PB交CD于点E,则PE =____________.
    10、(4分)如图 , 在 射 线 OA、OB 上 分 别 截 取 OA1、OB1, 使 OA1 OB1;连接 A1B1 , 在B1 A1、B1B 上分别截取 B1 A2、B1B2 ,使 B1 A2B1B2 ,连接 A2 B2;……依此类推,若A1B1O,则 A2018 B2018O =______________________.
    11、(4分)一组数据:,计算其方差的结果为__________.
    12、(4分)某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:
    商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是_____(用数学概念作答)
    13、(4分)命题”两条对角线相等的平行四边形是矩形“的逆命题是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(2,0),B(0,﹣2),P为y轴上B点下方一点,以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限,过M作MN⊥y轴于N.
    (1)求直线AB的解析式;
    (2)求证:△PAO≌△MPN;
    (3)若PB=m(m>0),用含m的代数式表示点M的坐标;
    (4)求直线MB的解析式.
    15、(8分)已知:如图,在菱形ABCD 中,点E,O,F分别是边AB,AC,AD的中点,连接CE、CF、OE、OF.
    (1)求证:△BCE≌△DCF;
    (2)当AB与BC满足什么条件时,四边形AEOF正方形?请说明理由.
    16、(8分)如图,在平面直角坐标系xOy中,A(1,1),B(4,1),C(2,3).
    (1)在图中作出△ABC关于y轴的轴对称图形△A′B′C′;
    (2)在图中作出△ABC关于原点O中心对称图形△A"B"C".
    17、(10分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?
    18、(10分)某学校计划组织全校1500名师生外出参加集体活动.经过研究,决定租用当地租车公司一共60辆、两种型号客车作为交通工具.
    下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
    注:载客量指的是每辆客车最多可载该校师生的人数.
    学校租用型号客车辆,租车总费用为元.
    (1)求与的函数解析式,请直接写出的取值范围;
    (2)若要使租车总费用不超过22000元,一共有几种租车方案?并结合函数性质说明哪种租车方案最省钱?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知,四边形ABCD中,AB∥CD,AB=8,DC=4,点M、N分别为边AB、DC的中点,点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,到达点A后立即原路返回,点P到达点C后点Q同时停止运动,设点P、Q运动的时问为t秒,当以点M、N、P、Q为顶点的四边形为平行四边形时,t的值为________。
    20、(4分)一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.
    21、(4分)如图,矩形ABCD的面积为20cm2,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B2;…;依此类推,则平行四边形AO4C5B的面积为________,平行四边形AOnCn+1B的面积为________.
    22、(4分)如图,小明作出了边长为2的第1个正△,算出了正△的面积.然后分别取△的三边中点、、,作出了第2个正△,算出了正△的面积;用同样的方法,作出了第3个正△,算出了正△的面积,由此可得,第2个正△的面积是__,第个正△的面积是__.
    23、(4分)长方形的长是宽的2倍,对角线长是5cm,则这个长方形的长是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)国家规定“中小学生每天在校体育活动时间不低于1h”,为此,某市就“每天在校体育活动”时间的问题随机调查了辖区内320名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
    A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h
    请根据上述信息解答下列问题:
    (1)C组的人数是 ;
    (2)本次调查数据的中位数落在 组内;
    (3)若该市辖区内约有32000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?
    25、(10分)如图,在□ABCD中,点E是边BC的中点,连接AE并延长,交DC的延长线于点F,连接AC,BF.
    (1)求证:△ABE≌△FCE;
    (2)当四边形ABFC是矩形时,当∠AEC=80°,求∠D的度数.
    26、(12分)如图,的对角线,相交于点,过点且与,分别相交于点,.求证:.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据正比例函数、一次函数、反比例函数及二次函数的定义对各选项进行逐一分析即可.
    【详解】
    A、y=是反比例函数,故本选项错误;
    B、y=-是正比例函数,故本选项正确;
    C、y=x+4是一次函数,故本选项错误;
    D、y=x2是二次函数,故本选项错误.
    故选:B.
    考查的是正比例函数的定义,熟知一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数是解答此题的关键.
    2、B
    【解析】
    由系数k和b的正负可判断A;令x=0,可求得与y轴的交点坐标,可判断B;根据系数k的正负可判断C;根据与x轴、与y轴交点坐标可求得三角形的面积,可判断D;可得出答案.
    【详解】
    解:∵一次函数中,k=-1<0,b=3>0,
    ∴图象经过一、二、四象限,
    故A正确,不符合题意;
    在中令x=0,可得y=3,
    ∴直线与y轴的交点坐标为(0,3),
    故B错误,符合题意;
    ∵一次函数中,k=-1<0,
    ∴y随x的增大而减小,
    故C正确,不符合题意;
    ∵直线与x轴的交点坐标为(3,0),与y轴的交点坐标为(0,3),
    ∴图象与坐标轴所围成的三角形面积为:×3×3=,
    故D正确,不符合题意.
    故选:B.
    本题主要考查一次函数的性质,掌握一次函数的增减性、与坐标轴的交点坐标的求法是解题的关键.
    3、B
    【解析】
    把a和b的值扩大大为原来的3倍,代入后根据分式的基本性质即可求出答案.
    【详解】
    解:把a和b的值扩大大为原来的3倍,得
    = ,
    ∴分式的值缩小为原来的.
    故选:B.
    本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.
    4、A
    【解析】
    根据二次根式中被开方数大于等于0即可求解.
    【详解】
    解:由题意可知,,
    解得,
    故选:A.
    此题主要考查了二次根式有意义的条件,即被开方数要大于等于0,正确把握二次根式有意义的条件是解题关键.
    5、A
    【解析】
    根据一元二次方程根与系数的关系得到x1+x2=4,代入代数式计算即可.
    【详解】
    解:∵x1+x2=4,
    ∴x1+3x2=x1+x2+2x2=4+2x2=5,
    ∴x2=,
    把x2=代入x2-4x+m=0得:()2-4×+m=0,
    解得:m=,
    故选:A.
    本题考查的是一元二次方程根与系数的关系,掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=-,x1•x2=是解题的关键.
    6、C
    【解析】
    根据三角形的中位线定理得出DE是△ABC的中位线,再由中位线的性质得出结论.
    【详解】
    解:∵在△ABC中,点D、E分别是边AB、AC的中点,
    ∴DE//BC,DE=BC,
    ∴BC=2DE,∠ADE=∠B,
    故选C.
    本题考查了三角形的中位线定理,根据三角形的中位线的定义得出DE是△ABC的中位线是解答此题的关键.
    7、D
    【解析】
    由矩形的性质可知CD=AB= 3,BC=AD= 1,结合A点坐标即可求得C点坐标.
    【详解】
    ∵四边形ABCD是长方形,
    ∴CD=AB= 3,BC=AD= 1,
    ∵点A(﹣,﹣1),
    ∴点C的坐标为(﹣+3,﹣1+1),
    即点C的坐标为(,3),
    故选D.
    本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.
    8、B
    【解析】
    分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.
    详解:把这组数据排列顺序得:35 38 40 1 44 45 45 47,则这组数据的中位数为:=43,=(35+38+1+44+40+47+45+45)=1.
    故选B.
    点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    连接BE,设CE的长为x
    ∵AC为正方形ABCD的对角线,正方形边长为4,CP=3
    ∴∠BAP=∠PCE=45°,AP=4-3=
    ∴BP2=AB2+AP2-2AB×AP×cs∠BAP=42+()2-2×4××=10
    PE2=CE2+CP2-2CE×CP×cs∠PCE=(3)2+x2-2x×3×=x2-6x+18
    BE2=BC2+CE2=16+x2 在Rt△PBE中,BP2+PE2=BE2,即:10+x2-6x+18=16+x2,解得:x=2
    ∴PE2=22-6×2+18=10 ∴PE=.
    10、
    【解析】
    分析:根据等腰三角形两底角相等用α表示出∠A2B2O,依此类推即可得到结论.
    详解:∵B1A2=B1B2,∠A1B1O=α,∴∠A2B2O=α,同理∠A3B3O==α,∠A4B4O=α,∴∠AnBnO=α,∴A2018 B2018O =.
    故答案为:.
    点睛:本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的外角的度数,得到分母为2的指数次幂变化,分子不变的规律是解题的关键.
    11、
    【解析】
    方差是用来衡量一组数据波动大小的量.数据5,5,5,5,5全部相等,没有波动,故其方差为1.
    【详解】
    解:由于方差是反映一组数据的波动大小的,而这一组数据没有波动,故它的方差为1.
    故答案为:1.
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    12、众数
    【解析】
    商场经理要了解哪些型号最畅销,所关心的即为众数.
    【详解】
    根据题意知:对商场经理来说,最有意义的是销售数量最多衬衫的数量,即众数.
    故答案为:众数.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    13、矩形是两条对角线相等的平行四边形.
    【解析】
    把命题的条件和结论互换就得到它的逆命题.
    【详解】
    命题”两条对角线相等的平行四边形是矩形“的逆命题是矩形是两条对角线相等的平行四边形,
    故答案为矩形是两条对角线相等的平行四边形.
    本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
    三、解答题(本大题共5个小题,共48分)
    14、(3)y=x﹣3.(3)详见解析;(3)(3+m,﹣4﹣m);(4)y=﹣x﹣3.
    【解析】
    (3)直线AB的解析式为y=kx+b(k≠2),利用待定系数法求函数的解析式即可;
    (3)先证∠APO=∠PMN,用AAS证△PAO≌△MPN;
    (3)由(3)中全等三角形的性质得到OP=NM,OA=NP.根据PB=m,用m表示出NM和ON=OP+NP,根据点M在第四象限,表示出点M的坐标即可.
    (4)设直线MB的解析式为y=nx﹣3,根据点M(m+3,﹣m﹣4).然后求得直线MB的解析式.
    【详解】
    (3)解:设直线AB:y=kx+b(k≠2)
    代入A(3,2 ),B (2,﹣3 ),得

    解得,
    ∴直线AB的解析式为:y=x﹣3.
    (3)证明:作MN⊥y轴于点N.
    ∵△APM为等腰直角三角形,PM=PA,
    ∴∠APM=92°.
    ∴∠OPA+∠NPM=92°.
    ∵∠NMP+∠NPM=92°,
    ∴∠OPA=∠NMP.
    在△PAO与△MPN中

    ∴△PAO≌△MPN(AAS).
    (3)由(3)知,△PAO≌△MPN,则OP=NM,OA=NP.
    ∵PB=m(m>2),
    ∴ON=3+m+3=4+m MN=OP=3+m.
    ∵点M在第四象限,
    ∴点M的坐标为(3+m,﹣4﹣m).
    (4)设直线MB的解析式为y=nx﹣3(n≠2).
    ∵点M(3+m,﹣4﹣m).
    在直线MB上,
    ∴﹣4﹣m=n(3+m)﹣3.
    整理,得(m+3)n=﹣m﹣3.
    ∵m>2,
    ∴m+3≠2.
    解得 n=﹣3.
    ∴直线MB的解析式为y=﹣x﹣3.
    本题综合考查了一次函数与几何知识的应用,运用待定系数法求一次函数解析式,全等三角形的判定与性质,函数图象上点的坐标特征等知识解答,注意“数形结合”数学思想的应用.
    15、(1)证明见解析;(2)AB⊥BC时,四边形AEOF正方形.
    【解析】
    (1)根据中点的定义及菱形的性质可得BE=DF,∠B=∠D,BC=CD,利用SAS即可证明△BCE≌△DCF;
    (2)由中点的定义可得OE为△ABC的中位线,根据三角形中位线的性质可得OE//BC,根据正方形的性质可得∠AEO=90°,根据平行线的性质可得∠ABC=∠AEO=90°,即可得AB⊥BC,可得答案.
    【详解】
    (1)∵四边形ABCD是菱形,点E,O,F分别是边AB,AC,AD的中点,
    ∴AB=BC=CD=AD,∠B=∠D,
    ∵点E、F分别是边AB、AD的中点,
    ∴BE=AB,DF=AD,
    ∴BE=DF,
    在△BCE和△DCF中,,
    ∴△BCE≌△DCF.
    (2)AB⊥BC,理由如下:
    ∵四边形AEOF是正方形,
    ∴∠AEO=90°,
    ∵点E、O分别是边AB、AC的中点,
    ∴OE为△ABC的中位线,
    ∴OE//BC,
    ∴∠B=∠AEO=90°,
    ∴AB⊥BC.
    本题考查菱形的性质、全等三角形的判定及正方形的性质,菱形的四条边都相等,对角相等;正方形的四个角都是直角;熟练掌握菱形和正方形的性质是解题关键.
    16、(1)答案见解析;(2)答案见解析.
    【解析】
    (1)在坐标轴中找出点A'(-1,1),B(-4,1),C'(-2,3),连线即可.
    (2)在坐标轴中找出点A" (-1,-1),B"(-4,-1), C"(-2,-3),连线即可.
    【详解】
    (1)△ABC关于y轴的轴对称图形△A′B′C′的坐标分别为A'(-1,1),B'(-4,1),C'(-2,3),
    在坐标轴中找出点,连线即可.

    (2)△ABC关于原点O中心对称图形△A"B"C"的坐标分别为A" (-1,-1),B"(-4,-1), C"(-2,-3),
    在坐标轴中找出点,连线即可.
    本题主要考查了坐标轴中图形的对称,正确掌握坐标轴中图形的对称图形的坐标是解题的关键.
    17、2400元
    【解析】
    试题分析:连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.
    试题解析:连结AC,
    在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC=(米),
    ∵AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,
    该区域面积S=S△ACB﹣S△ADC=×5×12﹣×3×4=24(平方米),
    即铺满这块空地共需花费=24×100=2400元.
    考点:1.勾股定理;2.勾股定理的逆定理.
    18、 (1)与的函数解析式为;(2)一共有11种租车方案,当租用型车辆30辆,型车辆30辆时,租车费用最省钱.
    【解析】
    (1)根据题意可以得到y与x的函数关系式,然后根据总人数可以求出x的取值范围,本题得以解决;
    (2)根据题意可以得到关于x的不等式,然后根据一次函数的性质即可解答本题.
    【详解】
    (1)由题意可得,


    解得,,
    即与的函数解析式为;
    (2)由题意可得,

    解得,,

    为整数,
    、31、32、33、、40,
    共有11种租车方案,

    随的增大而增大,
    当时,取得最小值,此时,,
    答:一共有11种租车方案,当租用型车辆30辆,型车辆30辆时,租车费用最省钱.
    本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1或1.5或3.5
    【解析】
    利用线段中点的定义求出DN,BM的长,再根据两点的运动速度及运动方向,分情况讨论:当0<t≤2时,PN=2-t,MQ=4-3t或MQ=3t-4;当2<t≤4时PN=t-2,MQ=12-3t,然后根据平行四边形的判定定理,由题意可知当PN=MQ,以点M、N、P、Q为顶点的四边形为平行四边形,分别建立关于t的方程,分别求解即可
    【详解】
    解:∵点M、N分别为边AB、DC的中点,
    ∴DN=DC= ×4=2,
    BM=AB=×8=4;
    ∵点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,点P到达点C后点Q同时停止运动,
    ∴DP=t,BQ=3t,
    当0<t≤2时,PN=2-t,MQ=4-3t或MQ=3t-4
    当2<t≤4时PN=t-2,MQ=12-3t
    ∵ AB∥CD
    ∴PN∥MQ;
    ∴当PN=MQ,以点M、N、P、Q为顶点的四边形为平行四边形,
    ∴2-t=4-3t,或2-t=3t-4,或t-2=12-3t,
    解之:t=1或t=1.5或t=3.5.
    故答案为:t=1或1.5或3.5.
    本题考查平行四边形的判定和性质,一元一次方程等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
    20、3.1
    【解析】
    根据众数的定义先求出x的值,然后再根据方差的公式进行计算即可得.
    【详解】
    解:已知一组数据1,x,4,6,7的众数是6,说明x=6,
    则平均数=(1+6+4+6+7)÷5=15÷5=5,
    则这组数据的方差==3.1,
    故答案为3.1.
    本题考查了众数、方差等,熟练掌握众数的定义、方差的计算公式是解题的关键.
    21、,
    【解析】
    根据矩形的性质求出△AOB的面积等于矩形ABCD的面积的,求出△AOB的面积,再分别求出△ABO1、△ABO2、△ABO3、△ABO4的面积,即可得出答案.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AO=CO,BO=DO,DC∥AB,DC=AB,
    ∴S△ADC=S△ABC=S矩形ABCD=×20=10,
    ∴S△AOB=S△BCO=S△ABC=×10=5,
    ∴S△ABO1=S△AOB=×5=,
    ∴S△ABO2=S△ABO1=,
    S△ABO3=S△ABO2=,
    S△ABO4=S△ABO3=,
    ∴S平行四边形AO4C5B=2S△ABO4=2×=,
    平行四边形AOnCn+1B的面积为,
    故答案为:;.
    本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.
    22、,
    【解析】
    根据等边三角形的性质求出正△A1B1C1的面积,根据三角形中位线定理得到,根据相似三角形的性质计算即可.
    【详解】
    正△的边长,
    正△的面积,
    点、、分别为△的三边中点,
    ,,,
    △△,相似比为,
    △与△的面积比为,
    正△的面积为,
    则第个正△的面积为,
    故答案为:;.
    本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    23、
    【解析】
    设矩形的宽是a,则长是2a,再根据勾股定理求出a的值即可.
    【详解】
    解:设矩形的宽是a,则长是2a,
    对角线的长是5cm,

    解得,
    这个矩形的长,
    故答案是:.
    考查的是矩形的性质,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)根C组的人数为140人;(2)调查数据的中位数落在C组;(3)达国家规定体育活动时间的人约有20000人.
    【解析】
    (1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C组的人数;
    (2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得答案;
    (3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.
    【详解】
    解:(1)根据题意有:C组的人数为320﹣20﹣100﹣60=140;
    (2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;
    (3)达国家规定体育活动时间的人数约占×100%=62.5%.
    所以,达国家规定体育活动时间的人约有32000×62.5%=20000(人).
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.
    25、(1)见解析;(2)40°
    【解析】
    (1)根据矩形性质得出AB∥DC,推出∠1=∠2,根据AAS证两三角形全等即可;
    (2)由四边形ABFC是矩形可得AE=BE,由外角额性质可求出∠ABE=∠BAE=40°,然后根据平行四边形的对角相等即可求出∠D的度数.
    【详解】
    解:(1)如图.
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC 即 AB∥DF,
    ∴∠1=∠2,
    ∵点E是BC的中点,
    ∴BE=CE.
    在△ABE和△FCE中,
    ∠1=∠2, BE=CE,∠3=∠4,
    ∴△ABE≌△FCE(AAS).
    (2)∵四边形ABFC是矩形,
    ∴AF=BC,AE=AF,BE=BC,
    ∴AE=BE,
    ∴∠ABE=∠BAE,
    ∵∠AEC=80°,
    ∴∠ABE=∠BAE=40°,
    ∵四边形ABCD是平行四边形,
    ∴∠D=∠ABE=40°.
    点睛:本题考查了平行四边形的性质,平行线的性质,全等三角形的判定,矩形的性质,三角形外角的性质,熟练掌握平行四边形的性质和矩形的性质还是解答本题的关键.
    26、见解析.
    【解析】
    根据“ASA”证明,即可证明.
    【详解】
    证明:四边形是平行四边形,
    ,.
    .
    在和,


    .
    本题考查了平行四边形的性质,全等三角形的判定与性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
    题号





    总分
    得分
    批阅人
    型号(厘米)
    38
    39
    40
    41
    42
    43
    数量(件)
    25
    30
    36
    50
    28
    8
    型号
    载客量
    租金单价
    30人辆
    400元辆
    20人辆
    300元辆

    相关试卷

    福建省福州市台江区华伦中学2024年九上数学开学联考模拟试题【含答案】:

    这是一份福建省福州市台江区华伦中学2024年九上数学开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省福州市时代中学2024-2025学年数学九上开学监测模拟试题【含答案】:

    这是一份福建省福州市时代中学2024-2025学年数学九上开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省福州市第十九中学2024年九上数学开学复习检测模拟试题【含答案】:

    这是一份福建省福州市第十九中学2024年九上数学开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map