开学活动
搜索
    上传资料 赚现金

    福建省龙岩市第四中学2024-2025学年九年级数学第一学期开学考试试题【含答案】

    福建省龙岩市第四中学2024-2025学年九年级数学第一学期开学考试试题【含答案】第1页
    福建省龙岩市第四中学2024-2025学年九年级数学第一学期开学考试试题【含答案】第2页
    福建省龙岩市第四中学2024-2025学年九年级数学第一学期开学考试试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省龙岩市第四中学2024-2025学年九年级数学第一学期开学考试试题【含答案】

    展开

    这是一份福建省龙岩市第四中学2024-2025学年九年级数学第一学期开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)反比例函数y=,当x的值由n(n>0)增加到n+2时,y的值减少3,则k的值为( )
    A.B.C.﹣D.
    2、(4分)如图是由四个全等的直角三角形拼接而成的图形,其中,,则的长是( )
    A.7B.8C.D.
    3、(4分)若3x >﹣3y,则下列不等式中一定成立的是( )
    A.x>yB.x<yC.x﹣y>0D.x+y>0
    4、(4分)已知x,y满足,则以x,y的值为两边长的等腰三角形的周长是( )
    A.20或16B.20C.16D.以上答案都不对
    5、(4分)下列调查中,适合采用普查的是 ( )
    A.夏季冷饮市场上冰激凌的质量B.某本书中的印刷错误
    C.《舌尖上的中国》第三季的收视率D.公民保护环境的意识
    6、(4分)下列式子中,属于最简二次根式的是( )
    A.B.C.D.
    7、(4分)如图,在矩形纸片中,,,将纸片折叠,使点落在边上的点处,折痕为,再将沿向右折叠,点落在点处,与交于点,则的面积为( )
    A.4B.6C.8D.10
    8、(4分)高跟鞋的奥秘:当人肚脐以下部分的长与身高,的比值越接近0.618时,越给人以一种匀称的美感,如图,某女士身高,脱去鞋后量得下半身长为,则建议她穿的高跟鞋高度大约为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P到OB的距离是___cm.
    10、(4分)某种药品原价75元盒,经过连续两次降价后售价为45元/盒.设平均每次降价的百分率为x,根据题意可列方程为_____.
    11、(4分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、1.已知这组数据的众数与平均数相等,那么这组数据的中位数是________.
    12、(4分)一组数据3,4,6,8,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是 .
    13、(4分)在一个不透明的盒子中装有n个小球,它们除颜色不同外,其余都相同,其中有4个是白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中,大量重复上述实验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是___.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(1)计算:
    (2)解方程:-1=
    15、(8分)如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=2AE=4,∠BCE=30°.
    (1)求平行四边形ABCD的面积;
    (2)求证:∠EMC=2∠AEM .
    16、(8分)计算:(1);(2)sin30°+cs30°•tan60°.
    17、(10分)已知函数y=x+(x>0),它的图象犹如老师的打钩,因此人称对钩函数.下表是y与x的几组对应值:
    请你根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究.
    (1)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
    (2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:
    (3)当a≤x≤4时,y的取值范围为2≤y≤4,则a的取值范围为 .
    18、(10分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民户一表生活用水阶梯式计费价格表的部分信息:
    说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费.
    (1)设小王家一个月的用水量为吨,所应交的水费为元,请写出与的函数关系式;
    (2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把7月份的水费控制在不超过家庭月收入的.若小王家的月收入为元,则小王家7月份最多能用多少吨水?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)比较大小:_____1.(填“>”、“=”或“<”)
    20、(4分)分解因式:x2y﹣y3=_____.
    21、(4分)如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:______________,使四边形ABCD成为菱形.
    22、(4分)在一次芭蕾舞比赛中有甲、乙两个团的女演员参加表演,她们的平均身高相同,若S甲2=1.5,S乙2=2.5,则_____(填“甲”或“乙”)表演团的身高更整齐.
    23、(4分)已知关于x的方程x2+(3﹣2k)x+k2+1=0的两个实数根分别是x1、x2,当|x1|+|x2|=7时,那么k的值是__.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:
    经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.
    (1)求a,b的值;
    (2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;
    (3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
    25、(10分)如图,在平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为,,.
    (1)画出将向上平移2个单位长度,再向左平移5个单位长度后得到的;
    (2)画出将绕点按顺时针方向旋转90°得到的;
    (3)在轴上存在一点,满足点到点与点的距离之和最小,请直接写出点的坐标.
    26、(12分)正比例函数和一次函数的图象都经过点,且一次函数的图象交轴于点.
    (1)求正比例函数和一次函数的表达式;
    (2)在如图所示的平面直角坐标系中分别画出这两个函数的图象;
    (3)求出的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据函数的增减性,可得分式方程,根据解分式方程,可得答案.
    【详解】
    由题意,得﹣=3,
    解得k=,
    故选:D.
    本题考查了反比例函数,利用函数的增减性得出分式方程是解题关键.
    2、C
    【解析】
    由图易知EG与FG的长,然后根据勾股定理即可求出EF的长.
    【详解】
    解:如图,由题意可知:AE=BG=FC=5,BE=CG=12,
    ∴EG=BE-BG=12-5=7,FG=CG-FC=12-5=7,
    ∴在Rt△EGF中,EF==7.
    故选C.
    本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.
    3、D
    【解析】
    利用不等式的性质由已知条件可得到x+y>1,从而得到正确选项.
    【详解】
    ∵3x>﹣3y,
    ∴3x+3y>1,
    ∴x+y>1.
    故选:D.
    本题考查了不等式的性质:应用不等式的性质应注意的问题,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于1进行分类讨论.
    4、B
    【解析】
    先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.
    【详解】
    解:根据题意得,4-x=0,y-8=0,
    解得x=4,y=8,
    ①4是腰长时,三角形的三边分别为4、4、8,
    ∵4+4=8,
    ∴不能组成三角形,
    ②4是底边时,三角形的三边分别为4、8、8,
    能组成三角形,周长=4+8+8=1,
    所以,三角形的周长为1.
    故选B.
    本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.
    5、B
    【解析】
    分析:根据抽样调查和全面调查的意义解答即可.
    详解: A.调查夏季冷饮市场上冰激凌的质量具有破坏性,宜采用抽样调查;
    B. 调查某本书中的印刷错误比较重要,宜采用普查;
    C. 调查《舌尖上的中国》第三季的收视率工作量比较大,宜采用抽样调查;
    D. 调查公民保护环境的意识工作量比较大,宜采用抽样调查;
    故选B.
    点睛: 本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    6、B
    【解析】
    根据最简二次根式的定义判断即可.
    【详解】
    解:A、,不是最简二次根式,故A选项错误;
    B、是最简二次根式,故B选项正确;
    C、,不是最简二次根式,故C选项错误;
    D、,不是最简二次根式,故D选项错误.
    此题考查最简二次根式问题,在判断最简二次根式的过程中要注意:
    (1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
    (2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.
    7、C
    【解析】
    此题关键是求出CH的长,根据两次折叠后的图像中△GBH∽△ECH,得到对应线段成比例即可求解.
    【详解】
    由图可知经过两次折叠后,
    GB=FG-BF=FG-(10-FG)=2
    BF=EC=10-FG=4,
    ∵FG∥EC,
    ∴△GBH∽△ECH

    ∵GB=2,EC=4,
    ∴CH=2BH,
    ∵BC=BH+CH=6,
    ∴CH=4,
    ∴S△ECH=EC×CH=×4×4=8.
    故选C
    此题主要考查矩形的折叠问题,解题的关键是熟知相似三角形的判定与性质.
    8、C
    【解析】
    先设出穿的高跟鞋的高度,再根据黄金分割的定义列出算式,求出x的值即可.
    【详解】
    解:设需要穿的高跟鞋是x(cm),根据黄金分割的定义得:

    解得:,
    ∴建议她穿的高跟鞋高度大约为8cm;
    故选:C.
    本题主要考查了黄金分割的应用.掌握黄金分割的定义是解题的关键,是一道基础题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据角平分线上的点到角两边的距离相等可得点P到OB的距离等于点P到OA的距离,即点P到OB的距离等于PE的长度.
    【详解】
    解: ∵OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,
    ∴PE=PF=1cm
    故答案为:1.
    本题考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题关键.
    10、
    【解析】
    可先表示出第一次降价后的价格,那么第一次降价后的价格×(1-降低的百分率)=1,把相应数值代入即可求解.
    【详解】
    解:第一次降价后的价格为75×(1-x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为:
    75×(1-x)×(1-x),
    则列出的方程是75(1-x)2=1.
    故答案为75(1-x)2=1.
    此题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
    11、2
    【解析】
    根据题意先确定x的值,再根据中位数的定义求解.
    【详解】
    解:当x=1或12时,有两个众数,而平均数只有一个,不合题意舍去.
    当众数为2,根据题意得:
    解得x=2,
    将这组数据从小到大的顺序排列1,2,2,2,12,
    处于中间位置的是2,
    所以这组数据的中位数是2.
    故答案为2.
    本题主要考查了平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.
    12、1.
    【解析】
    解不等式组得,3≤x<1,
    ∵x是整数,∴x=3或2.
    当x=3时,3,2,6,8,x的中位数是2(不合题意舍去);
    当x=2时,3,2,6,8,x的中位数是2,符合题意.
    ∴这组数据的平均数可能是(3+2+6+8+2)÷1=1.
    13、10
    【解析】
    利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
    【详解】
    ∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,
    ∴=0.4,
    解得:n=10.
    故答案为:10.
    此题考查利用频率估计概率,掌握运算法则是解题关键
    三、解答题(本大题共5个小题,共48分)
    14、(1)3+2;(2)原方程无解
    【解析】
    (1)利用乘法公式展开,然后合并即可;
    (2)先去分母把方程化为(x-2)2-(x+2)(x-2)=16,然后解整式方程后进行检验确定原方程的解.
    【详解】
    解:(1)原式=5+5-3-2
    =3+2;
    (2)去分母得(x-2)2-(x+2)(x-2)=16,
    解得x=-2,
    检验:当x=-2时,(x+2)(x-2)=0,则x=-2为原方程的增根,
    所以原方程无解.
    本题考查了二次根式的混合运算及分式方程的解法:先进行二次根式的乘法运算,再合并同类二次根式即可.解分式方程最关键的是把分式方程化为整式方程.
    15、(1) ;(2)证明见解析.
    【解析】
    (1)由AM=2AE=4,利用平行四边形的性质可求出BC=AD=1,利用直角三角形的性质得出BE、CE的长,进而得出答案;
    (2) 延长EM,CD交于点N,连接CM.通过证明△AEM≌△DNM,可得EM=MN,然后由直角三角形斜边的中线等于斜边的一半可证MN=MC,然后根据三角形外角的性质证明即可.
    【详解】
    (1)解:∵M为AD的中点,AM=2AE=4,
    ∴AD=2AM=1.在▱ABCD的面积中,BC=CD=1,
    又∵CE⊥AB,
    ∴∠BEC=90°,
    ∵∠BCE=30°,
    ∴BE=BC=4,
    ∴AB=6,CE=4,
    ∴▱ABCD的面积为:AB×CE=6×4=24;
    (2)证明:延长EM,CD交于点N,连接CM.
    ∵在▱ABCD中,AB∥CD,
    ∴∠AEM=∠N,
    在△AEM和△DNM中
    ∵∠AEM=∠N,
    AM=DM,
    ∠AME=∠DMN,
    ∴△AEM≌△DNM(AAS),
    ∴EM=MN,
    又∵AB∥CD,CE⊥AB,
    ∴CE⊥CD,
    ∴CM是Rt△ECN斜边的中线,
    ∴MN=MC,
    ∴∠N=∠MCN,
    ∴∠EMC=2∠N=2∠AEM.
    此题主要考查了平行四边形的性质、全等三角形的判定与性质、三角形外角的性质、直角三角形的性质等知识.熟练应用平行四边形的性质是解(1)关键,正确作出辅助线是解(2)的关键.
    16、(1);(2)2
    【解析】
    试题分析:(1)根据二次根式的乘除法法则计算即可;
    (2)根据特殊角的锐角三角函数值计算即可.
    解:(1)原式;
    (2)原式.
    考点:实数的运算
    点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.
    17、(1)画图见解析;(2):x=1时,y有最小值2,当x<1时,y随x的增大而减小;(3)1≤a≤4
    【解析】
    (1)根据描出的点,画出该函数的图象即可;
    (2)①当x=1时,求得y有最小值2;②根据函数图象即可得到结论;
    (3)根据x取不同值时,y所对应的取值范围即可得到结论.
    【详解】
    解:(1)函数图象如图所示;
    (2)①当x=1时,y有最小值2;
    ②当x<1时,y随x的增大而减小;
    (3)当a≤x≤4时,y的取值范围为2≤y≤4,则a的取值范围为1≤a≤4,
    故答案为(1)画图见解题过程;(2)①x=1时,y有最小值2;②当x<1时,y随x的增大而减小;(3)1≤a≤4.
    本题考查了反比例函数的性质,函数图象的画法,画出函数图象是解本题的关键.
    18、(1)y= ;(2)40吨.
    【解析】
    (1)由水费=自来水费+污水处理,分段得出y与x的函数关系式;
    (2)先判断用水量超过30吨,继而再由水费不超过184,可得出不等式,解出即可.
    【详解】
    解:(1)设小王家一个月的用水量为x吨,所应交的水费为y元,则
    ①当用水量17吨及以下时,y=(2.2+0.8)x=3x;
    ②当17<x≤30时,y=17×2.2+4.2(x−17)+0.8x=5x−34;
    ③当x>30时,y=17×2.2+13×4.2+6(x−30)+0.8x=6.8x−1.
    ∴y= ;
    (2)当用水量为30吨时,水费为:6.8×30−1=116元,9200×2%=184元,
    ∵116<184,
    ∴小王家七月份的用水量超过30吨,
    设小王家7月份用水量为x吨,
    由题意得:6.8x−1≤184,
    解得:x≤40,
    ∴小王家七月份最多用水40吨.
    本题考查了一次函数的应用及一元一次不等式的应用,解答本题的关键是仔细审题,将实际问题转化为数学模型求解.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、>.
    【解析】
    【分析】先求出1=,再比较即可.
    【详解】∵12=9<10,
    ∴>1,
    故答案为:>.
    【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.
    20、y(x+y)(x﹣y).
    【解析】
    试题分析:先提取公因式y,再利用平方差公式进行二次分解.
    解:x2y﹣y3
    =y(x2﹣y2)
    =y(x+y)(x﹣y).
    故答案为y(x+y)(x﹣y).
    21、AB=AD.
    【解析】
    由条件OA=OC,AB=CD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定.
    【详解】
    添加AB=AD,
    ∵OA=OC,OB=OD,
    ∴四边形ABCD为平行四边形,
    ∵AB=AD,
    ∴四边形ABCD是菱形,
    故答案为:AB=AD.
    此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.
    22、甲
    【解析】
    根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    【详解】
    解:由于S2甲<S乙2,
    则成绩较稳定的演员是甲.
    故答案为甲.
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    23、﹣1.
    【解析】
    先根据方程有两个实数根,确定△≥0,可得k≤,由x1•x1=k1+1>0,可知x1、x1,同号,分情况讨论即可.
    【详解】
    ∵x1+(3﹣1k)x+k1+1=0的两个实数根分别是x1、x1,
    ∴△=(3﹣1k)1﹣4×1×(k1+1)≥0,
    9﹣11k+4k1﹣4k1﹣4≥0,
    k≤,
    ∵x1•x1=k1+1>0,
    ∴x1、x1,同号,
    分两种情况:
    ①当x1、x1同为正数时,x1+x1=7,
    即1k﹣3=7,
    k=5,
    ∵k≤,
    ∴k=5不符合题意,舍去,
    ②当x1、x1同为负数时,x1+x1=﹣7,
    即1k﹣3=﹣7,
    k=﹣1,
    故答案为:﹣1.
    本题考查了根与系数的关系和根的判别式.解此题时很多学生容易顺理成章的利用两根之积与和公式进行解答,解出k值,而忽略了限制性条件△≥0时k≤.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台;④A型设备1台,B型设备7台;(1)为了节约资金,应选购A型设备2台,B型设备8台.
    【解析】
    (1)购买A型的价格是a万元,购买B型的设备b万元,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元,可列方程组求解. (2)设购买A型号设备x台,则B型为(10-x)台,根据使治污公司购买污水处理设备的资金不超过100万元,进而得出不等式. (1)利用每月要求处理污水量不低于1880吨,可列不等式求解.
    【详解】
    解:(1)根据题意得:,
    解得:;
    (2)设购买污水处理设备A型设备x台,B型设备(10-x)台,根据题意得,
    12x+9(10-x)≤100,
    ∴x≤,
    ∵x取非负整数,
    ∴x=0,1,2,1
    ∴10-x=10,9,8,7
    ∴有四种购买方案:
    ①A型设备0台,B型设备10台;
    ②A型设备1台,B型设备9台;
    ③A型设备2台,B型设备8台.
    ④A型设备1台,B型设备7台;
    (1)由题意:220x+180(10-x)≥1880,
    ∴x≥2,
    又∵x≤,
    ∴x为2,1.
    当x=2时,购买资金为12×2+9×8=96(万元),
    当x=1时,购买资金为12×1+9×7=99(万元),
    ∴为了节约资金,应选购A型设备2台,B型设备8台.
    本题考查了一元一次不等式的应用,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元和根据使治污公司购买污水处理设备的资金不超过100万元,若每月要求处理洋澜湖的污水量不低于1880吨,等量关系和不等量关系分别列出方程组和不等式求解.
    25、(1)答案见解析;(2)答案见解析;(3).
    【解析】
    (1)先分别将A、B、C三点向上平移2个单位长度,再向左平移5个单位长度得到,然后连接、、即可;
    (2)根据题意,先将边OC和OA绕点顺时针方向旋转90°得到、,然后连接即可;
    (3)连接交x轴于点P,根据两点之间线段最短即可得出此时点到点与点的距离之和最小,然后利用待定系数法求出直线的解析式,从而求出点P 的坐标.
    【详解】
    解:(1)先分别将A、B、C三点向上平移2个单位长度,再向左平移5个单位长度得到,然后连接、、,如图所示,即为所求;
    (2)先将边OC和OA绕点顺时针方向旋转90°得到、,然后连接,如图所示,即为所求;
    (3)连接交x轴于点P,根据两点之间线段最短,即可得出此时点到点与点的距离之和最小,
    由平面直角坐标系可知:点A的坐标为(4,3),点的坐标为(3,-4)
    设直线的解析式为y=kx+b
    将A、的坐标代入,得
    解得:
    ∴直线的解析式为y=7x-25
    将y=0代入,得
    ∴点P的坐标为.
    此题考查的是图形的平移、旋转、两点之间线段最短的应用和求一次函数的解析式,掌握图形的平移、旋转的画法、两点之间线段最短和利用待定系数法求一次函数的解析式是解决此题的关键.
    26、(1);;(2)图详见解析;(3)3
    【解析】
    (1)把代入即可求得的值,求得正比例函数的解析式;把,代入,利用待定系数法,即可求得一次函数的解析式;
    (2)根据题意描出相应的点,再连线即可;
    (3)由A、B、O三点坐标,根据三角形的面积公式即可求解.
    【详解】
    解:(1)把A(1,2)代入中,得,
    ∴正比例函数的表达式为;
    把A(1,2),B(3,0)代入中,得

    解得:,
    所以一次函数的表达式为;
    (2)如图所示.
    (3)由题意可得:.
    本题考查了待定系数法求函数解析式,以及直线与坐标轴围成的三角形的面积的计算,理解线段的长度可以通过点的坐标表示,培养数形结合思想是关键.
    题号





    总分
    得分
    批阅人
    x
    1
    2
    3
    4
    y
    4
    3
    2
    2
    2
    3
    4
    序号
    函数图象特征
    函数变化规律
    示例1
    在直线x=1右侧,函数图象呈上升状态
    当x>1时,y随x的增大而增大
    示例2
    函数图象经过点(2,2)
    当x=2时,y=2

    函数图象的最低点是(1,2)


    在直线x=1左侧,函数图象呈下降状态

    自来水销售价格
    污水处理价格
    每户每月用水量
    单价:元/吨
    单价:元/吨
    吨及以下
    超过 17 吨但不超过 30 吨的部分
    超过 30 吨的部分

    A型
    B型
    价格(万元/台)
    a
    b
    处理污水量(吨/月)
    220
    180

    相关试卷

    福建省龙岩市金丰片区2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】:

    这是一份福建省龙岩市金丰片区2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省龙岩市第一中学2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】:

    这是一份福建省龙岩市第一中学2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省龙岩市北城中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】:

    这是一份福建省龙岩市北城中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map