福建省龙岩市长汀县2025届九年级数学第一学期开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,四边形 ABCD 中,AC=a,BD=b,且 AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有( )
①四边形A2B2C2D2是矩形;
②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长是
④四边形AnBnCnDn的面积是
A.①②③B.②③④C.①②D.②③
2、(4分)去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )
A.最低温度是32℃B.众数是35℃C.中位数是34℃D.平均数是33℃
3、(4分)如图所示,在平行直角坐标系中,▱OMNP的顶点P坐标是(3,4),顶点M坐标是(4,0)、则顶点N的坐标是( )
A.N(7,4)B.N(8,4)C.N(7,3)D.N(8,3)
4、(4分)在一个直角三角形中,如果斜边长是10,一条直角边长是6,那么另一条直角边长是( ).
A.6B.7C.8D.9
5、(4分)已知 y1 x 5 , y2 2x 1 .当 y1 y2 时,x 的取值范围是( )
A.x 5B.x C.x 6D.x 6
6、(4分)如图,菱形的边长为是边的中点,是边上的一个动点,将线段绕着逆时针旋转,得到,连接,则的最小值为( )
A.B.C.D.
7、(4分)要使二次根式有意义,x必须满足( )
A.x≤2B.x≥2C.x<2D.x>2
8、(4分)一家鞋店对上周某一品牌女鞋的销售量统计如下:
该鞋店决定本周多进一些尺码为23.5厘米的该品牌女鞋,影响鞋店决策的统计量是( )
A.方差B.中位数C.平均数D.众数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,是的斜边上的中线,,在上找一点,使得,连结并延长至,使得,连结,,则长为________.
10、(4分)当x______时,分式有意义.
11、(4分)若关于的方程有增根,则的值为________.
12、(4分)化简:_____.
13、(4分)二项方程在实数范围内的解是_______________
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,的角平分线交于点,交的延长线于点,连接.
(1)请判断的形状,并说明理由;
(2)已知,,求的面积.
15、(8分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,在现有网格中,以格点为顶点,分别按下列要求画三角形。
(1)在图1中,画一个等腰直角三角形,使它的面积为5;
(2)在图2中,画一个三角形,使它的三边长分别为3,2 , ;
(3)在图3中,画一个三角形,使它的三边长都是有理数.
16、(8分)某工厂甲、乙两人加工同一种零件,每小时甲比乙多加工10个这种零件,甲加工150个这种零件所用的时间与乙加工120个这种零件所用的时间相等,
(1)甲、乙两人每小时各加工多少个这种零件?
(2)该工厂计划加工920个零件,甲参与加工这批零件不超过12小时,则乙至少加工多少小时才能加工完这批零件?
17、(10分)我们知道一个“非负数的算术平方根”指的是“这个数的非负平方根”。据此解答下列问题:
(1)是的算术平方根吗?为什么?
(2)是的算术平方根吗?为什么?
(3)你能证明:吗?
18、(10分)某体育用品商店,准备用不超过2800元购买足球和篮球共计60个,已知一个篮球的进价为50元,售价为65元;一个足球的进价为40元,售价为50元.
(1)若购进x个篮球,购买这批球共花费y元,求y与x之间的函数关系式;
(2)设售出这批球共盈利w元,求w与x之间的函数关系式;
(3)体育用品商店购进篮球和足球各多少个时,才能获得最大利润?最大利润是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知中,,点为的中点,在线段上取点,使与相似,则的长为 ______________.
20、(4分)若代数式有意义,则x的取值范围是______。
21、(4分)如图,正方形中,对角线,交于点,点在上,,,垂足分别为点,,,则______.
22、(4分)某一次函数的图象经过点(3,),且函数y随x的增大而增大,请你写出一个符合条件的函数解析式______________________
23、(4分)一组数据;1,3,﹣1,2,x的平均数是1,那么这组数据的方差是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了参加“仙桃市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(l)班 86,85,77,92,85;八(2)班 79,85,92,85,1.通过数据分析,列表如下:
(1)直接写出表中a,b,c,d的值;
(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.
25、(10分)如图,在平面直角坐标系内,三个顶点的坐标分别为,,.
(1)平移,使点移动到点,画出平移后的,并写出点,的坐标;
(2)画出关于原点对称的;
(3)线段的长度为______.
26、(12分)如图,△ABC的边AB=8,BC=5,AC=1.求BC边上的高.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积.
【详解】
①连接A1C1,B1D1.
∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四边形A1B1C1D1是平行四边形;
∵AC丄BD,∴四边形A1B1C1D1是矩形,
∴B1D1=A1C1(矩形的两条对角线相等);
∴A2D2=C2D2=C2B2=B2A2(中位线定理),
∴四边形A2B2C2D2是菱形;
故①错误;
②由①知,四边形A2B2C2D2是菱形;
∴根据中位线定理知,四边形A4B4C4D4是菱形;
故②正确;
③根据中位线的性质易知,A5B5=
∴四边形A5B5C5D5的周长是2×;
故③正确;
④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四边形ABCD=ab÷2;
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形AnBnCnDn的面积是.
故④正确;
综上所述,②③④正确.
故选C.
考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.
2、D
【解析】
分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.
详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.
故选D.
点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.
3、A
【解析】
此题可过P作PE⊥OM,过点N作NF⊥OM,根据勾股定理求出OP的长度,则N点坐标便不难求出.
【详解】
过P作PE⊥OM,过点N作NF⊥OM,
∵顶点P的坐标是(3,4),
∴OE=3,PE=4,
∵四边形ABCD是平行四边形,
∴OE=MF=3,
∵4+3=7,
∴点N的坐标为(7,4).
故选A.
此题考查了平行四边形的性质,根据平行四边形的性质和点P的坐标,作出辅助线是解决本题的突破口.
4、C
【解析】
本题直接根据勾股定理求解即可.
【详解】
由勾股定理的变形公式可得:另一直角边长==1.
故选C.
本题考查勾股定理的应用,熟练掌握勾股定理是解题的关键.
5、C
【解析】
由题意得到x-5>2x+1,解不等式即可.
【详解】
∵y1>y2,
∴x−5>2x+1,
解得x<−6.
故选C.
此题考查一次函数与一元一次不等式,解题关键在于掌握运算法则.
6、B
【解析】
取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;先证明E点与E'点重合,再在Rt△EBC中,EB=2,BC=4,求EC的长.
【详解】
取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B
,
此时CE的长就是GB+GC的最小值;
∵MN∥AD,
∴HM=AE,
∵HB⊥HM,AB=4,∠A=60°,
∴MB=2,∠HMB=60°,
∴HM=1,
∴AE'=2,
∴E点与E'点重合,
∵∠AEB=∠MHB=90°,
∴∠CBE=90°,
在Rt△EBC中,EB=2,BC=4,
∴EC=2,
故选A.
本题考查菱形的性质,直角三角形的性质;确定G点的运动轨迹,是找到对称轴的关键.
7、B
【解析】
试题分析:根据二次根式的意义可知二次根式有意义的条件是被开方数大于等于0,因此可得x-1≥0,解这个不等式可得x≥1.
故选B
考点:二次根式的意义
8、D
【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.
【详解】
解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.
故选:D.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据直角三角形的性质求出DE,根据三角形中位线定理计算即可.
【详解】
解:∵DE是Rt△ABD的斜边AB上的中线,AB=12,
∴DE=AB=6,
∴EF=DE-DF=6-2=4,
∵AF=CF,AE=EB,
∴EF是三角形ABC的中位线,
∴BC=2EF=1,
故答案为:1.
本题考查的是直角三角形的性质、三角形中位线定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
10、≠
【解析】
试题分析:分式有意义的条件:分式的分母不为0时,分式才有意义.
由题意得,.
考点:分式有意义的条件
点评:本题属于基础应用题,只需学生熟练掌握分式有意义的条件,即可完成.
11、;
【解析】
先将m视为常数求解分式方程,得出方程关于m的解,再根据方程有增根判断m的值.
【详解】
去分母得:2x+1-x-2=m
解得:x=m+1
∵分式方程有增根
∴x=-2
∴m+1=-2
解得:m=-1
故答案为;-1.
本题考查解分式方程增根的情况,注意当方程中有字母时,我们通常是将字母先视为常数进行计算,后续再讨论字母的情况.
12、
【解析】
算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.
【详解】
8的算术平方根为.∴
故答案为:.
此题考查算术平方根的定义,解题关键在于掌握其定义.
13、x=-1
【解析】
由2x1+54=0,得x1=-27,解出x值即可.
【详解】
由2x1+54=0,得x1=-27,
∴x=-1,
故答案为:x=-1.
本题考查了立方根,正确理解立方根的意义是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)是等腰三角形,理由见解析;(2).
【解析】
(1)根据平行四边形的性质证得∠F=∠DAF,从而得到结论;
(2)利用S平行四边形ABCD=2S△ADE求解即可.
【详解】
(1)是等腰三角形,利用如下:
∵四边形为平行四边形,
∴.
∴.
∵平分,
∴.
∴.
∴.
即是等腰三角形
(2)∵在等腰中,,
∴.
∴
在中,
∴
∴
∴.
考查了平行四边形的性质及解直角三角形的知识,体现了转化的数学思想.
15、(1)详见解析;(2)详见解析;(3)详见解析;
【解析】
(1)画一个边长为 的直角三角形即可;
(2)利用勾股定理画出三角形即可;
(3)画一个三边长为3,4,5的三角形即可.
【详解】
(1)如图所示;
(2)如图所示;
(3)如图所示.
此题考查勾股定理,作图—应用与设计作图,解题关键在于掌握作图法则.
16、(1)甲每小时加工零件50个,乙每小时加工零件40个(2)乙至少加工8天才能加工完这批零件.
【解析】
(1)根据“甲加工150个零件所用的时间与乙加工120个零件所用的时间相等”可得出相等关系,从而只需不是出™各自的时间就可以了;(2)根据题目条件列出不等式求出加工天数.
【详解】
解:(1)设乙每小时加工零件个 ,则甲每小时加工零件个
由题可得:
解得:
经检验 是原方程的解,则
答:甲每小时加工零件50个,乙每小时加工零件40个.
(2)设乙至少加工天才能加工完这批零件,则
解之得:
答:乙至少加工8天才能加工完这批零件.
本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
17、(1)不是;(2)是;(3)见解析.
【解析】
根据平方根与算术平方根的定义,以及绝对值的意义即可作出判断.
【详解】
(1)-2不是4的算术平方根,
∵(-2)2=4,
∴-2是4的平方根,
但-2<0,
∴-2不是4的算术平方根;
(2)2是4的算术平方根,
∵22=4,
∴2是4的算术平方根,
(3)可以证明:,
∵,,
∴.
此题主要考查了算术平方根的定义、绝对值的意义,算术平方根的概念易与平方根的概念混淆而导致错误.
18、(1)y与x之间的函数关系式为;
(2)w与x之间的函数关系式;
(3)当时,w最大为800元.
【解析】
(1)由题意得购进篮球x个,则购进足球的个数为 ,再根据篮球足球的单价可得有关y与x的函数关系式;
(2)已知篮球和足球购进的个数分别乘以其售价减去成本的差即可表示利润w与x的函数关系式;
(3)由总费用不超过2800得到x的取值范围,再x的取值范围中找到w的最大值即可.
【详解】
解:(1)设购进x个篮球,则购进了个足球.
,
∴y与x之间的函数关系式为 ;
(2) ,
∴w与x之间的函数关系式;
(3)由题意,,
解得,,
在中,
∵ ,∴ y随x的增大而增大,
∴当时,w最大为800元.
∴当购买40个篮球,20个足球时,获得的利润最大,最大利润为800元.
此题考查了一次函数及一元一次不等式组的应用,解答本题的关键是仔细审题,根据题意所述的等量关系及不等关系,列出不等式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、或
【解析】
根据题意与相似,可分为两种情况,△AMN∽△ABC或者△AMN∽△ACB,两种情况分别列出比例式求解即可
【详解】
∵M为AB中点,∴AM=
当△AMN∽△ABC,有,即,解得MN=3
当△AMN∽△ACB,有,即,解得MN=
故填3或
本题主要考查相似三角形的性质,解题关键在于要对题目进行分情况讨论
20、x>5
【解析】
若代数式 有意义,则分母即≠0,可得出x≠5.根据根式的性质能够得出x-5≥0,结合前面x≠5,即可得出x的取值范围.
【详解】
若代数式有意义,
则≠0,得出x≠5.
根据根式的性质知中被开方数x-5≥0
则x≥5,
由于x≠5,则可得出x>5,
答案为x>5.
本题主要考查分式及根式有意义的条件,易错点在于学生容易漏掉其中之一.
21、1.
【解析】
由S△BOE+S△COE=S△BOC即可解决问题.
【详解】
连接OE.
∵四边形ABCD是正方形,AC=10,
∴AC⊥BD,BO=OC=1,
∵EG⊥OB,EF⊥OC,
∴S△BOE+S△COE=S△BOC,
∴•BO•EG+•OC•EF=•OB•OC,
∴×1×EG+×1×EF=×1×1,
∴EG+EF=1.
故答案为1.
本题考查正方形的性质,利用面积法是解决问题的关键,这里记住一个结论:等腰三角形底边上一点到两腰的距离之和等于腰上的高,填空题可以直接应用,属于中考常考题型
22、y=x-4
【解析】
首先设一次函数解析式为y=kx+b,根据y随x的增大而增大可选取k=1(k取任意一个正数即可),再把点(3,﹣1)代入可得﹣1=3+b,计算出b的值,进而可得解析式.
【详解】
∵函数的值随自变量的增大而增大,
∴该一次函数的解析式为y=kx+b(k>0),
∴可选取k=1,
再把点(3,﹣1)代入:﹣1=3+b,
解得:b=-4,
∴一次函数解析式为y=x-4,
故答案为:y=x-4(答案不唯一).
本题考查一次函数的性质,掌握一次函数图象与系数的关系是解题的关键.
23、1
【解析】
先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x1,…xn的平均数为,),则方差.
【详解】
解:x=1×5﹣1﹣3﹣(﹣1)﹣1=0,
s1= [(1﹣1)1+(1﹣3)1+(1+1)1+(1﹣1)1+(1﹣0)1]=1.
故答案为1.
本题考查了方差的定义:一般地设n个数据,x1,x1,…xn的平均数为,),则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
二、解答题(本大题共3个小题,共30分)
24、 (1)a=86,b=2,c=2,d=22.8;(2) 八(2)班前5名同学的成绩较好,理由见解析
【解析】
(1)根据平均数、中位数、众数的概念解答, 根据方差计算公式,求出八(1)班的方差即可;
(2)先根据方差计算公式,求出八(1)班的方差,结合平均数、中位数、众数与方差的意义求解即可;
【详解】
(1)八(2)班的平均分a=(79+2+92+2+1)÷5=86,
将八(1)班的前5名学生的成绩按从小到大的顺序排列为:77,2,2,86,92,第三个数是2,所以中位数b=2,
2出现了2次,次数最多,所以众数c=2.
八(1)班的方差d=[(86-2)2+(2-2)2+(77-2)2+(92-2)2+(2-2)2]÷5=22.8;
故答案为86,2,2,22.8;
(2)∵由数据可知,两班成绩中位数,众数相同,而八(2)班平均成绩更高,且方差更小,成绩更稳定,
∴八(2)班前5名同学的成绩较好;
考查方差、平均数、众数和中位数,平均数表示一组数据的平均程度.一组数据中出现次数最多的数据叫做众数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
25、(1)如图见解析,,;(2)如图见解析;(3).
【解析】
(1)作出A、C的对应点A1、C1即可解决问题;
(2)根据中心对称的性质,作出A、B、C的对应点A2、B2、C2即可;
(3)利用两点之间的距离公式计算即可.
【详解】
(1)平移后的△A1B1C1如图所示,点A1(4,2),C1(3,-1).
(2)△ABC关于原点O对称的△A2B2C2如图所示.
(3)AA1=.
本题考查了平移变换、旋转变换、两点之间的距离公式等知识,解题的关键是正确作出对应点解决问题,属于中考常考题型.
26、BC边上的高AD=.
【解析】
作AD⊥BC于D,根据勾股定理列方程求出CD,根据勾股定理计算即可.
【详解】
作AD⊥BC于D,
由勾股定理得,AD2=AB2-BD2,AD2=AC2-CD2,
∴AB2-BD2=AC2-CD2,即82-(5-CD)2=12-CD2,
解得,CD=1,
则BC边上的高AD=.
考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
题号
一
二
三
四
五
总分
得分
批阅人
尺码/厘米
22
22.5
23
23.5
24
24.5
25
销售量/双
1
2
5
11
7
3
1
2025届福建省龙岩市新罗区龙岩初级中学数学九年级第一学期开学经典试题【含答案】: 这是一份2025届福建省龙岩市新罗区龙岩初级中学数学九年级第一学期开学经典试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省龙岩市数学九上开学经典试题【含答案】: 这是一份2024年福建省龙岩市数学九上开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省龙岩市五县九上数学开学经典模拟试题【含答案】: 这是一份2024-2025学年福建省龙岩市五县九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。