年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    福建省龙岩市上杭三中学2025届九年级数学第一学期开学复习检测模拟试题【含答案】

    福建省龙岩市上杭三中学2025届九年级数学第一学期开学复习检测模拟试题【含答案】第1页
    福建省龙岩市上杭三中学2025届九年级数学第一学期开学复习检测模拟试题【含答案】第2页
    福建省龙岩市上杭三中学2025届九年级数学第一学期开学复习检测模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省龙岩市上杭三中学2025届九年级数学第一学期开学复习检测模拟试题【含答案】

    展开

    这是一份福建省龙岩市上杭三中学2025届九年级数学第一学期开学复习检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.
    A.1个B.2个C.3个D.4个
    2、(4分)下列各组数中,不能构成直角三角形的是( )
    A.B.C.D.
    3、(4分)晨光中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐三项体育成绩(百分制)依次95分、90分、86分,则小桐这学期的体育成绩是( )
    A.88B.89分C.90分D.91分
    4、(4分)下列图形中,中心对称图形有( )
    A.1个B.2个C.3D.4个
    5、(4分)如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0), 则点D的坐标为( )
    A.(1, 3)B.(1,)C.(1,)D.(,)
    6、(4分)如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是
    A.B.C.D.
    7、(4分)一组数据从小到大排列为1,2,4,x,6,1.这组数据的中位数是5,那么这组数据的众数为( )
    A.4 B.5 C.5.5 D.6
    8、(4分)如图,在菱形 ABCD 中,对角线 AC,BD 交于点 O,AO=3,∠ABC=60°,则菱形 ABCD 的面积是( )
    A.18B.18C.36D.36
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某班有48名同学,在一次英语单词竞赛成绩统计中,成绩在81~ 90这一分数段的人数所占的频率是0.25,那么成绩在这个分数段的同学有_________名.
    10、(4分)已知,点P在轴上,则当轴平分时,点P的坐标为______.
    11、(4分)A、B、C三瓶不同浓度的酒精,A瓶内有酒精2kg,浓度x%,B瓶有酒精3kg,浓度y%,C瓶有酒精5kg,浓度z%,从A瓶中倒出10%,B瓶中倒出20%,C瓶中倒出24%,混合后测得浓度33.5%,将混合后的溶液倒回瓶中,使它们恢复原来的质量,再从A瓶倒出30%,B瓶倒出30%,C瓶倒出30%,混合后测得浓度为31.5%,测量发现,,,且x、y、z均为整数,则把起初A、B两瓶酒精全部混合后的浓度为______.
    12、(4分)阅读后填空:
    已知:如图,,,、相交于点.
    求证:.
    分析:要证,可先证;
    要证,可先证;
    而用______可证(填或或).
    13、(4分)如图(1),已知小正方形的面积为1,把它的各边延长一倍得新正方形;把正方形边长按原法延长一倍得到正方形如图(2);以此下去⋯⋯,则正方形的面积为_________________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某公司销售部有销售人员14人,为提高工作效率和员工的积极性,准备实行“每月定额销售,超额有奖”的措施.调查这14位销售人员某月的销售量,获得数据如下表:
    (1)求这14位营销人员该月销售量的平均数和中位数
    (2)如果你是该公司的销售部管理者,你将如何确定这个定额?请说明理由.
    15、(8分)某市篮球队到市一中选拔一名队员,教练对王亮和李刚两名同学进行次分投篮测试,一人每次投个球,下图记录的是这两名同学次投篮中所投中的个数.
    (1)请你根据图中的数据,填写下表;
    (2)你认为谁的成绩比较稳定,为什么?
    (3)若你是教练,你打算选谁?简要说明理由.
    16、(8分)直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF//AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.
    (1)①直线y=x-6与坐标轴交点坐标是A(_____,______),B(______,_____);
    ②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);
    (2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);
    (3)连接AD,BC四边形ABCD是什么图形,并求t为何值时,四边形ABCD的面积为36?
    17、(10分)如图,为锐角三角形,是边上的高,正方形的一边在上,顶点、分别在、上.已知,.
    (1)求证:;
    (2)求这个正方形的面积.
    18、(10分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.
    (1)求证:四边形AECD是菱形;
    (2)若AB=5,AC=12,求EF的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知点A(﹣2,y1)、B(﹣3,y2)都在反比例函数y=﹣的图象上,则y1_____y2(填“<”或“>”)
    20、(4分)直线y=3x-2不经过第________________象限.
    21、(4分)直线向下平移2个单位长度得到的直线是__________.
    22、(4分)两个反比例函数C1:y=和C2:y=在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为_____.
    23、(4分)已知关于x的方程x2-2ax+1=0有两个相等的实数根,则a=____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1,已知直线:交轴于,交轴于.
    (1)直接写出的值为______.
    (2)如图2,为轴负半轴上一点,过点的直线:经过的中点,点为轴上一动点,过作轴分别交直线、于、,且,求的值.
    (3)如图3,已知点,点为直线右侧一点,且满足,求点坐标.
    25、(10分)如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.
    (1)求∠ABC的度数;
    (2)如果AC=4,求DE的长.
    26、(12分)某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:
    政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.
    (1)用含有x的代数式表示y;
    (2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;
    (3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.
    【详解】
    (1)对角线互相平分的四边形是平行四边形,说法正确;
    (2)对角线互相垂直的四边形是菱形,说法错误;
    (3)对角线互相垂直且相等的平行四边形是正方形,说法正确;
    (4)对角线相等的平行四边形是矩形,说法正确.
    正确的个数有3个,
    故选C.
    此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.
    2、C
    【解析】
    根据勾股定理的逆定理逐项计算即可.
    【详解】
    A. ∵32+42=52,∴能构成直角三角形;
    B. ∵12+22=,∴能构成直角三角形;
    C. ∵,∴不能构成直角三角形;
    D. ∵12+=22,∴ 能构成直角三角形;
    故选C.
    本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
    3、B
    【解析】
    根据加权平均数的意义计算即可.
    【详解】
    解:小桐这学期的体育成绩:
    95×20%+90×30%+86×50%=89(分),
    故选:B.
    本题考查了加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.
    4、B
    【解析】
    绕一个点旋转180度后所得的图形与原图形完全重合的图形叫做中心对称图形作出判断.
    【详解】
    等边三角形不是中心对称图形;
    平行四边形是中心对称图形;
    圆是中心对称图形;
    等腰梯形不是中心对称图形.
    故选:B.
    此题考查中心对称图形,解题关键在于识别图形
    5、A
    【解析】
    过D作DH⊥y轴于H,根据矩形和正方形的性质得到AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,根据全等三角形的性质即可得到结论.
    【详解】
    过D作DH⊥y轴于H,
    ∵四边形AOCB是矩形,四边形BDEF是正方形,
    ∴AO=BC,DE=EF=BF,
    ∠AOC=∠DEF=∠BFE=∠BCF=90°,
    ∴∠OEF+∠EFO=∠BFC+∠EFO=90°,
    ∴∠OEF=∠BFO,
    ∴△EOF≌△FCB(ASA),
    ∴BC=OF,OE=CF,
    ∴AO=OF,
    ∵E是OA的中点,
    ∴OE=OA=OF=CF,
    ∵点C的坐标为(3,0),
    ∴OC=3,
    ∴OF=OA=2,AE=OE=CF=1,
    同理△DHE≌△EOF(ASA),
    ∴DH=OE=1,HE=OF=2,
    ∴OH=2,
    ∴点D的坐标为(1,3),
    故选A.
    本题考查了正方形的性质,坐标与图形性质,矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.
    6、D
    【解析】
    根据折叠的图形分析可得在正方形的每个边上有三个圆点.共有12个点.
    【详解】
    根据折叠的图形分析可得在正方形的每个边上有三个圆点.共有12个点.观察选项即可的D选项符合条件.
    故选D.
    本题主要考查正方形的折叠问题,关键在于确定数量.
    7、D
    【解析】
    分析:先根据中位数的定义可求得x,再根据众数的定义就可以求解.
    详解:根据题意得,(4+x)÷2=5,得x=2,
    则这组数据的众数为2.
    故选D.
    点睛:本题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数,难度适中.
    8、B
    【解析】
    由菱形的性质可求AC,BD的长,由菱形的面积公式可求解.
    【详解】
    ∵四边形ABCD是菱形
    ∴AO=CO=3,BO=DO=3,AC⊥BD
    ∴AC=6,BD=6
    ∴菱形ABCD的面积=
    故选B.
    本题考查了菱形的性质,熟练运用菱形面积公式是本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    由题意直接根据频数=频率×总数,进而可得答案.
    【详解】
    解:由题意可得成绩在81~ 90这个分数段的同学有48×0.25=1(名).
    故答案为:1.
    本题主要考查频数和频率,解题的关键是掌握频率等于频数除以总数进行分析计算.
    10、
    【解析】
    作点A关于y轴对称的对称点,求出点的坐标,再求出直线的解析式,将代入直线解析式中,即可求出点P的坐标.
    【详解】
    如图,作点A关于y轴对称的对称点
    ∵,点A关于y轴对称的对称点

    设直线的解析式为
    将点和点代入直线解析式中
    解得
    ∴直线的解析式为
    将代入中
    解得

    故答案为:.
    本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.
    11、
    【解析】
    根据第一次A、B、C各取出部分混合后的浓度得到一条关于xyz的等式,再算出混合液倒回后A、B、C中后各自的酒精量,然后根据第二次混合再得到一条关于xyz的等式,联立组成方程组,使用x、y表示z,根据x、y、z的取值范围确定其准确整数值即可求解.
    【详解】
    解:A瓶倒出10%:2000×10%=200(克),剩余:2000-200=1800(克),
    B瓶倒出20%:3000×20%=600(克),剩余:3000-600=2400(克),
    C瓶倒出24%:5000×24%=1200(克),剩余:5000-1200=3800(克),
    根据题意得:(200×x%+600×y%+1200×z%)÷(200+600+1200)=33.5%,
    混合液倒回后A瓶内的酒精量:1800×x%+200×33.5%,
    混合液倒回后B瓶内的酒精量:2400×y%+600×33.5%,
    混合液倒回后C瓶内的酒精量:3800×z%+1200×33.5%,
    再根据题意可得:
    [(1800×x%+200×33.5%)×30%+(2400×y%+600×33.5%)×30%+(3800×z%+1200×33.5%)×30%]÷(2000×30%+3000×30%+5000×30%)=31.5%,
    整理组成方程组得: ,
    解得: ,
    ∵,,
    ∴,又∵且为整数,
    则,
    代入可得:,或者或者,
    ∵x、y、z均为整数,则只有符合题意,
    则把起初A、B两瓶酒精混合后的浓度为:,
    故答案为:.
    本题考查从题意提取信息列方程组的能力,也考查三元一次方程组得解法,准确得出x、y和z之间的关系式再代入范围求解,舍去不符合题意的解为解题的关键.
    12、
    【解析】
    根据HL定理推出Rt△ABC≌Rt△DCB,求出∠ACB=∠DBC,再根据等角对等边证明即可.
    【详解】
    解:HL定理,理由是:
    ∵∠A=∠D=90°,
    ∴在Rt△ABC和Rt△DCB中
    ∴Rt△ABC≌Rt△DCB(HL),
    ∴∠ACB=∠DBC,
    ∴OB=OC,
    故答案为:HL.
    本题考查了全等三角形的判定定理和性质定理、等腰三角形的判定等知识点,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,AAS,ASA,SSS,直角三角形全等还有HL定理.
    13、1
    【解析】
    根据条件计算出图(1) 正方形A1B1C1D1的面积,同理求出正方形A2B2C2D2的面积,由此找出规律即可求出答案.
    【详解】
    图(1)中正方形ABCD的面积为1,把各边延长一倍后,每个小三角形的面积也为1,
    所以正方形A1B1C1D1的面积为5,
    图(2)中正方形A1B1C1D1的面积为5,把各边延长一倍后,每个小三角形的面积也为5,
    所以正方形A2B2C2D2的面积为52=25,
    由此可得正方形A5B5C5D5的面积为55=1.
    本题考查图形规律问题,关键在于列出各图形面积找出规律.
    三、解答题(本大题共5个小题,共48分)
    14、(1)平均数38(件);中位数:30(件);(2)答案见解析
    【解析】
    (1)按照平均数,中位数的定义分别求得.
    (2)根据平均数,中位数的意义回答.
    【详解】
    (1)解:平均数=38(件)
    中位数:30(件)
    (2)解:定额为38件,因为平均数反映平均程度;
    或:定额为30件,因为中位数可以反映一半员工的工作状况,把一半以上作为目标;
    或:除去最高分、最低分的平均数为=30.75≈31(件)
    因为除去极端情形较合理.
    本题考查了学生对平均数、中位数的计算及运用其进行分析的能力.
    15、(1)王亮5次投篮的平均数为7,方差为,(2)见解析,(3)见解析.
    【解析】
    (1)根据平均数的定义,计算5次投篮成绩之和与5的商即为王亮每次投篮平均数,再根据方差公式计算王亮的投篮次数的方差;根据众数定义,李刚投篮出现次数最多的成绩即为其众数; (2)方差越小,乘积越稳定. (3)从平均数、众数、方差等不同角度分析,可得不同结果,关键是看参赛的需要.
    【详解】
    解:(1)王亮5次投篮的平均数为:(6+7+8+7+7)÷5=7个,
    王亮的方差为:.
    (2)两人的平均数、众数相同,从方差上看,王亮投篮成绩的方差小于李刚投篮成绩的方差.所以王亮的成绩较稳定. (3)选王亮的理由是成绩较稳定,选李刚的理由是他具有发展潜力,李刚越到后面投中数越多.
    此题是一道实际问题,考查的是对平均数,众数,方差的理解与应用,将统计学知识与实际生活相联系,有利于培养学生学数学、用数学的意识,同时体现了数学来源于生活、应用于生活的本质.
    16、(1)①6,0,0,-6;②见详解;(2)证明见详解,当时,四边形DHEF为菱形;(3)四边形ABCD是矩形,当时,四边形ABCD的面积为1.
    【解析】
    (1)①令求出x的值即可得到A的坐标,令求出y的值即可得到B的坐标;
    ②先求出t=2时E,F的坐标,然后找到A,B关于EF的对称点,即可得到折叠后的图形;
    (2)先利用对称的性质得出,然后利用平行线的性质和角度之间的关系得出,由此可证明四边形DHEF为平行四边形,要使四边形DHEF为菱形,只要,利用,然后表示出EF,建立一个关于t的方程进而求解即可;
    (3)AB和CD关于EF对称,根据对称的性质可知四边形ABCD为平行四边形,由(2)知,即可判断四边形ABCD的形状,由,可知,建立关于四边形ABCD面积的方程解出t的值即可.
    【详解】
    (1)①令,则 ,解得 ,
    ∴ ;
    令, 则,
    ∴;
    ②当t=2时, ,图形如下:
    (2)如图,
    ∵四边形DCEF与四边形ABEF关于直线EF对称,,







    即轴,

    ∴四边形DHEF为平行四边形.
    要使四边形DHEF为菱形,只需,



    又,


    解得 ,
    ∴当时,四边形DHEF为菱形;
    (3)连接AD,BC,
    ∵AB和CD关于EF对称,
    ∴ ,
    ∴四边形ABCD为平行四边形.
    由(2)知,



    ∴四边形ABCD为矩形.
    ∵ ,



    ∴四边形ABCD的面积为 ,
    解得,
    ∴当时,四边形ABCD的面积为1.
    本题主要考查一次函数与四边形综合,掌握平行四边形的判定及性质,矩形的判定,勾股定理,菱形的性质并利用方程的思想是解题的关键.
    17、(1)见详解;(1)
    【解析】
    (1)根据EH∥BC即可证明.
    (1)如图设AD与EH交于点M,首先证明四边形EFDM是矩形,设正方形边长为x,再利用△AEH∽△ABC,得,列出方程即可解决问题.
    【详解】
    (1)证明:∵四边形EFGH是正方形,
    ∴EH∥BC,
    ∴∠AEH=∠B,∠AHE=∠C,
    ∴△AEH∽△ABC.
    (1)解:如图设AD与EH交于点M.
    ∵∠EFD=∠FEM=∠FDM=90°,
    ∴四边形EFDM是矩形,
    ∴EF=DM,设正方形EFGH的边长为x,
    ∵△AEH∽△ABC,
    ∴,
    ∴,
    ∴x=,
    ∴x1=,
    ∴正方形EFGH的面积为cm1.
    本题考查正方形的性质、相似三角形的判定和性质等知识,解题的关键是利用相似三角形的相似比对于高的比,学会用方程的思想解决问题,属于中考常考题型.
    18、(1)证明见解析;(2).
    【解析】
    (1)根据平行四边形和菱形的判定证明即可;
    (2)根据菱形的性质和三角形的面积公式解答即可.
    【详解】
    证明:(1)∵AD∥BC,AE∥DC,
    ∴四边形AECD是平行四边形,
    ∵∠BAC=90°,E是BC的中点,
    ∴AE=CE=BC,
    ∴四边形AECD是菱形
    (2)过A作AH⊥BC于点H,
    ∵∠BAC=90°,AB=5,AC=12,
    ∴BC=13,
    ∵,
    ∴,
    ∵点E是BC的中点,四边形AECD是菱形,
    ∴CD=CE,
    ∵S▱AECD=CE•AH=CD•EF,
    ∴.
    本题考查了菱形的判定和性质,关键是根据平行四边形和菱形的判定和性质解答.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、>.
    【解析】
    依据k=﹣8<0,可得此函数在每个象限内,y随x的增大而增大,根据反比例函数的性质可以判断y1与y2的大小关系.
    【详解】
    ∵y=﹣,在二四象限,
    ∴此函数在每个象限内,y随x的增大而增大,
    ∵A(﹣2,y1)、B(﹣3,y2)都在反比例函数y=﹣的图象上,﹣2>﹣3,
    ∴y1>y2,
    故答案为>.
    题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.
    20、二
    【解析】
    根据已知求得k,b的符号,再判断直线y=3x-2经过的象限.
    【详解】
    解:∵k=3>0,图象过一三象限,b=-2<0过第四象限
    ∴这条直线一定不经过第二象限.
    故答案为:二
    此题考查一次函数的性质,一次函数y=kx+b的图象有四种情况:
    ①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
    ②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
    ③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
    ④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
    21、
    【解析】
    根据一次函数图象几何变换的规律得到直线y=1x向下平移1个单位得到的函数解析式为y=1x-1.
    【详解】
    解:直线y=1x向下平移1个单位得到的函数解析式为y=1x-1
    故答案为:y=1x-1
    本题考查了一次函数图象几何变换规律:一次函数y=kx(k≠0)的图象为直线,直线平移时k值不变,当直线向上平移m(m为正数)个单位,则平移后直线的解析式为y=kx+m.当直线向下平移m(m为正数)个单位,则平移后直线的解析式为y=kx-m.
    22、1
    【解析】
    试题解析:∵PC⊥x轴,PD⊥y轴,
    ∴S矩形PCOD=2,S△AOC=S△BOD=,
    ∴四边形PAOB的面积=S矩形PCOD-S△AOC-S△BOD=2--=1.
    23、
    【解析】
    根据方程的系数结合根的判别式△=0,可得出关于a的一元二次方程,解之即可得出结论.
    【详解】
    解:∵关于x的方程x2-2ax+1=0有两个相等的实数根,
    ∴△=(-2a)2-4×1×1=0,
    解得:a=±1.
    故答案为:±1.
    本题考查了根的判别式,牢记“当△=0时,方程有两个相等的两个实数根”是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)k=-1;(2)或;(3)
    【解析】
    (1)将代入,求解即可得出;
    (2)先求得直线为,用含t的式子表示MN,根据列出方程,分三种情况讨论,可得到或;
    (3)在轴上取一点,连接,作交直线于,作轴于,再证出,得到直线的解析式为,将代入,得,可得出.
    【详解】
    解:(1)将代入,
    得,
    解得.
    故答案为:
    (2)∵在直线中,令,得,
    ∴,
    ∵,
    ∴线段的中点的坐标为,代入,得,
    ∴直线为,
    ∵轴分别交直线、于、,,
    ∴,,
    ∴,,
    ∵,
    ∴,分情况讨论:
    ①当时,,解得:.
    ②当时,,解得:.
    ③当时,,解得:,舍去.
    综上所述:或.
    (3)在轴上取一点,连接,作交直线于,作轴于,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,,
    ∴,
    ∴,
    ∴直线的解析式为,
    将代入,得,
    ∴.
    本题考查一次函数与几何的综合.要准确理解题意,运用数形结合、分类讨论的思想解答.
    25、(1);(2).
    【解析】
    试题分析:(1)要想求出∠ABC的度数,须知道∠DAB的度数,由菱形性质和线段垂直平分线的性质可证出△ABD是等边三角形,∴∠DAB=60°,于是;(2)先证△ABO≌△DBE,从而知道DE=AO,AO=AC的一半,于是DE的长就知道了.
    试题解析:(1)∵四边形ABCD是菱形,,∥,∴.∵为的中点,,∴.∴.∴ △为等边三角形.∴.∴.(2)∵四边形是菱形, ∴于,∵于,∴.∵∴.∴.
    考点:1.菱形性质;2.线段垂直平分线性质;3.等边三角形的判定与性质.
    26、(1)y;(2)3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个;(3)能
    【解析】
    试题分析:(1)根据总价=单价×数量,即可得到结果;
    (2)根据幸福村共有264户村民,沼气池修建用地708平方米,即可列不等式组求解;
    (3)先根据一次函数的性质求得最少费用,与村民每户集资700元与政府补助共计的费用比较即可判断.
    (1) ;
    (2)由题意得
    解①得x≥12
    解②得x≤14
    ∴不等式的解为12≤x≤14
    是正整数
    ∴x的取值为12,13,14
    即有3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个 ;
    (3)∵y=x+40中,随的增加而增加,要使费用最少,则x=12
    ∴最少费用为y=x+40=52(万元)
    村民每户集资700元与政府补助共计:700×264+340000=524800>520000
    ∴每户集资700元能满足所需要费用最少的修建方案.
    考点:本题考查的是一元一次不等式组的应用
    点评:解答本题的关键是读懂题意,找准不等关系列出不等式组,并注意未知数的取值是正整数.
    题号





    总分
    得分
    批阅人
    月销售量(件)
    145
    55
    37
    30
    24
    18
    人数(人)
    1
    1
    2
    5
    3
    2
    姓名
    平均数
    众数
    方差
    王亮
    李刚
    沼气池
    修建费用(万元/个)
    可供使用户数(户/个)
    占地面积(m2/个)
    A型
    3
    20
    48
    B型
    2
    3
    6
    姓名
    平均数
    众数
    方差
    王亮


    李刚

    相关试卷

    福建省龙岩市上杭四中学2025届数学九年级第一学期开学教学质量检测模拟试题【含答案】:

    这是一份福建省龙岩市上杭四中学2025届数学九年级第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省龙岩市上杭县数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024-2025学年福建省龙岩市上杭县数学九年级第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省龙岩市上杭三中学数学九年级第一学期开学调研模拟试题【含答案】:

    这是一份2024-2025学年福建省龙岩市上杭三中学数学九年级第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map