福建省龙岩市永定区2024年数学九年级第一学期开学综合测试试题【含答案】
展开这是一份福建省龙岩市永定区2024年数学九年级第一学期开学综合测试试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各等式正确的是( )
A.B.
C.D.
2、(4分)如图,已知二次函数,它与轴交于、,且、位于原点两侧,与的正半轴交于,顶点在轴右侧的直线:上,则下列说法:① ② ③ ④其中正确的结论有( )
A.①②B.②③C.①②③D.①②③④
3、(4分)下列函数关系式中,y是x的反比例函数的是
A.B.C.D.
4、(4分)若二次根式有意义,则a的取值范围是( )
A.a<3B.a>3C.a≤3D.a≠3
5、(4分)下列事件中,属于必然事件的是
A.如果都是实数,那么
B.同时抛掷两枚质地均匀的骰子,向上一面的点数之和为13
C.抛一枚质地均匀的硬币20次,有10次正面向上
D.用长为4cm,4cm,9cm的三条线段围成一个等腰三角形
6、(4分)已知关于x的不等式组无解,则a的取值范围是( )
A.a<3B.a≤3C.a>3D.a≥3
7、(4分)如图,直线y=ax+b(a≠0)过点A(0,4),B(-3,0),则方程ax+b=0的解是( )
A.x=-3B.x=4C.x=D.x=
8、(4分)如图,在中,,,点为上一点,,于点,点 为的中点,连接,则的长为( )
A.5B.4C.3D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)使有意义的x的取值范围是______.
10、(4分)如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于________.
11、(4分)张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是 .
12、(4分)如图,直线与轴、轴分别交于,两点,是的中点,是上一点,四边形是菱形,则的面积为______.
13、(4分)方程的解为:___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形中,已知点在上,点在上,且.
求证:.
15、(8分)如图,在平面直角坐标系中,,并且满足.一动点从点出发,在线段上以每秒个单位长度的速度向点移动;动点从点出发在线段上以每秒个单位长度的速度向点运动,点分别从点同时出发,当点运动到点时,点随之停止运动.设运动时间为(秒)
(1)求两点的坐标;
(2)当为何值时,四边形是平行四边形?并求出此时两点的坐标.
(3)当为何值时,是以为腰的等腰三角形?并求出此时两点的坐标.
16、(8分)如图,函数的图像与函数的图像交于两点,与轴交于点,已知点的坐标为点的坐标为.
(1)求函数的表达式和点的坐标;
(2)观察图像,当时,比较与的大小;
(3)连结,求的面积.
17、(10分)如图,等边△ABC的边长是2,D,E分别是AB,AC的中点,延长BC至点F,使CF=BC,连接CD,EF
(1)求证:CD=EF;
(2)求EF的长.
18、(10分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以A B为边在第二象限内作正方形ABCD.
(1)求点A、B的坐标,并求边AB的长;
(2)求点D的坐标;
(3)在x轴上找一点M,使△MDB的周长最小,请求出M点的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,先画一个边长为1的正方形,以其对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形,…,如此反复下去,那么第n个正方形的对角线长为_____.
20、(4分) “五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是_____.
21、(4分)方程-x=1的根是______
22、(4分)在正方形中,点在边上,点在线段上,且则_______度,四边形的面积_________.
23、(4分)如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线AB与x轴交于点C,与y轴交于点B,点A(1,3),点B(0,2).连接AO
(1)求直线AB的解析式;
(2)求三角形AOC的面积.
25、(10分)如图,∠B=90°,AB=4,BC=3,CD=l2,AD=13,点E是AD的中点,求CE的长.
26、(12分)如图1,在平面直角坐标系中,直线y=﹣x+b与x轴、y轴相交于A、B两点,动点C(m,0)在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.
(1)求m和b的数量关系;
(2)当m=1时,如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点B′的坐标及△BCD平移的距离;
(3)在(2)的条件下,直线AB上是否存在一点P,以P、C、D为顶点的三角形是等腰直角三角形?若存在,写出满足条件的P点坐标;若不存在,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
解:选项A. ,错误;
选项B. ,正确;
选项C. ,错误;
选项D. ,错误.
故选B.
本题考查;;;;;;灵活应用上述公式的逆用是解题关键.
2、D
【解析】
由根与系数的关系,结合顶点位置和坐标轴位置,进行分析即可得到答案.
【详解】
解:设函数图像与x轴交点的横坐标分别为x1,x2
则根据根于系数的关系得到:x1+x2=b, x1x2=c
∵A,B两点位于y轴两侧,且对称轴在y轴的右侧,则b>0
函数图像交y轴于C点,则c<0,
∴bc<0,即①正确;
又∵顶点坐标为( ),即()
∴=4,即
又∵ =,即
∴AB=4即③正确;
又∵A,B两点位于y轴两侧,且对称轴在y轴的右侧
∴<2,即b<4
∴0<b<4,故②正确;
∵顶点的纵坐标为4,
∴△ABD的高为4
∴△ABD的面积= ,故④正确;
所以答案为D.
本题考查了二次函数与一元二次方程的联系,熟练掌握二次函数和一元二次方程的性质是解答本题的关键.
3、D
【解析】
根据反比例函数的定义,反比例函数的一般式是y=kx(k≠0),可以判定函数的类型.
【详解】
A. 是一次函数,故此选项错误;
B. 是正比例函数,故此选项错误;
C. 不是反比例函数,故此选项错误;
D. 是反比例函数,故此选项正确。
故选D.
本题考查反比例函数的定义,熟练掌握反比例函数的定义对选项进行判断是解题关键.
4、C
【解析】
根据被开方数是非负数,可得答案.
【详解】
解:由题意得,
3−a⩾0,解得a⩽3,
故选:C.
本题主要考查了二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.
5、A
【解析】
根据事件发生的可能性大小判断相应事件的类型即可。
【详解】
A. 如果a,b都是实数,那么a+b=b+a,是必然事件;
B、同时抛掷两枚骰子,向上一面的点数之和为13,是不可能事件;
C、抛一枚质地均匀的硬币20次,有10次正面向上,是随机事件;
D、用长为4cm,4cm,9cm的三条线段围成一个等腰三角形,是不可能事件;
故选:A
此题考查必然事件,难度不大
6、B
【解析】
首先解不等式,然后根据不等式组无解确定a的范围.
【详解】
,
解不等式①得x≥2.
解不等式②得x<a﹣2.
∵不等式组无解,
∴a﹣2≤2.
∴a≤3
故选:B.
本题考查解一元一次不等式组,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了,据此即可逆推出a的取值范围.
7、A
【解析】
根据所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.
【详解】
方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,
∵直线y=ax+b过B(-3,0),
∴方程ax+b=0的解是x=-3,
故选A.
本题考查了一次函数与一元一次方程,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
8、D
【解析】
利用三角形的中位线定理即可求答,先证明出E点为CD的中点,F点为AC的中点,证出EF为AC的中位线.
【详解】
因为BD=BC,BE⊥CD,
所以DE=CE,
又因为F为AC的中点,
所以EF为ΔACD的中位线,
因为AB=10,BC=BD=6,
所以AD=10-6=4,
所以EF=×4=2,
故选D
本题考查三角形的中位线等于第三边的一半,学生们要熟练掌握即可求出答案.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
二次根式有意义的条件.
【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
10、1
【解析】
连接EG,FH,根据题目数据可以证明△AEF与△CGH全等,根据全等三角形对应边相等可得EF=GH,同理可得EG=FH,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF是平行四边形,所以△PEF和△PGH的面积和等于平行四边形EGHF的面积的一半,再利用平行四边形EGHF的面积等于矩形ABCD的面积减去四周四个小直角三角形的面积即可求解.
【详解】
解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,
∴AE=AB-BE=4-1=3,
CH=CD-DH=4-1=3,
∴AE=CH,
在△AEF与△CGH中,,
∴△AEF≌△CGH(SAS),
∴EF=GH,
同理可得,△BGE≌△DFH,
∴EG=FH,
∴四边形EGHF是平行四边形,
∵△PEF和△PGH的高的和等于点H到直线EF的距离,
∴△PEF和△PGH的面积和=×平行四边形EGHF的面积,
平行四边形EGHF的面积
=4×6-×2×3-×1×(6-2)-×2×3-×1×(6-2),
=24-3-2-3-2,
=14,
∴△PEF和△PGH的面积和=×14=1.
故答案为1.
考点:矩形的性质;平行四边形的判定与性质.
11、1.
【解析】
∵100,80,x,1,1,这组数据的众数与平均数相等,
∴这组数据的众数只能是1,否则,x=80或x=100时,出现两个众数,无法与平均数相等.
∴(100+80+x+1+1)÷5=1,解得,x=1.
∵当x=1时,数据为80,1,1,1,100,
∴中位数是1.
12、8.
【解析】
已知直线y=x+8与x轴、y轴分别交于A,B两点, 可求得点A、B的坐标分别为:(8 ,0)、(0,8);又因 C是OB的中点, 可得点C(0,4),所以菱形的边长为4,根据菱形的性质可得DE=4=DC,设点D(m,m+8),则点E(m,m+4),由两点间的距离公式可得CD2=m2+(m+8﹣4)2=16, 解方程求得m=2, 即可得点E(2,2), 再根据S△OAE= ×OA×yE即可求得的面积.
【详解】
∵直线y=x+8与x轴、y轴分别交于A,B两点,
∴当x=0时,y=8;当y=0时,x=8,
∴点A、B的坐标分别为:(8 ,0)、(0,8),
∵C是OB的中点,
∴点C(0,4),
∴菱形的边长为4,则DE=4=DC,
设点D(m,m+8),则点E(m,m+4),
则CD2=m2+(m+8﹣4)2=16,
解得:m=2,
故点E(2,2),
S△OAE= ×OA×yE=×8×2=8 ,
故答案为8.
本题是一次函数与几何图形的综合题,正确求得点E的坐标是解决问题的关键.
13、,
【解析】
根据解一元二次方程的方法,即可得到答案.
【详解】
解:∵,
∴,
∴,,
故答案为:,;
本题考查了解一元二次方程的方法,解题的关键是掌握解方程的方法和步骤.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】
由“平行四边形ABCD的对边平行且相等”的性质推知AB=CD,AB∥CD.然后根据图形中相关线段间的和差关系求得BE=FD,易证四边形EBFD是平行四边形.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.
∵AE=CF.
∴BE=FD,BE∥FD,
∴四边形EBFD是平行四边形,
∴DE=BF.
本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
15、 (1);(2);(3) 或.
【解析】
(1)由二次根式有意义的条件可求出a、b的值,再根据已知即可求得答案;
(2)由题意得:,则,当时,四边形是平行四边形,由此可得关于t的方程,求出t的值即可求得答案;
(3)分、两种情况分别画出符合题意的图形,
【详解】
(1)由,
则,
,
∵AB//OC,A(0,12),B(a,c),
∴c=12,
∴;
(2)如图,
由题意得:,
则:,
当时,四边形是平行四边形,
,
解得:,
;
(3)当时,过作,则四边形AOQN是矩形,
∴AN=OQ=t,QN=OA=12,
∴PN=t,
由题意得:,
解得:,
故,
当时,过作轴,
由题意得:,
则,
解得:,
故.
本题考查了二次根式有意义的条件,平行形的性质,矩形的判定与性质,等腰三角形的性质,坐标与图形的性质等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
16、(1),点的坐标为;(2)详见解析;(3)1.5
【解析】
(1)把A(2,1),C(0,3)代入y1=k1x+b可求出k1和b;把A(2,1)代入(x>0)求出k2,然后把两个解析式联立起来解方程组即可求出B点坐标;
(2)观察函数图象,当x>0,两图象被A,B分成三段,然后分段判断大小以及对应的x的值;
(3)利用梯形-进行计算.
【详解】
解:(1)∵点在函数的图像上,
,解得:,
∴函数的表达式为.
∵点在函数的图像上,
,∴函数的表达式为.
由,得:或,
∴点的坐标为.
(2)如图,分别过作轴的垂线,垂足分别为,则点的坐标分别为.
由图像可知:
当时,;当时,;当时,.
(3)梯形-
.
本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了观察函数图象的能力.
17、(1)见解析;(2)EF=.
【解析】
(1)直接利用三角形中位线定理得出DE∥BC,DE=BC,进而得出DE=FC,得出四边形CDEF是平行四边形,即可得出CD=EF;
(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长即可得答案.
【详解】
(1)∵D、E分别为AB、AC的中点,
∴DE为△ABC的中位线,
∴DE∥BC,DE=BC,
∵使CF=BC,
∴DE=FC,
∴四边形CDEF是平行四边形,
∴CD=EF.
(2)∵四边形DEFC是平行四边形,
∴CD=EF,
∵D为AB的中点,等边△ABC的边长是2,
∴AD=BD=1,CD⊥AB,BC=2,
∴EF=CD==.
本题考查等边三角形的性质、平行四边形的判定与性质及三角形中位线的性质,三角形的中位线平行于第三边,且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.
18、(1);(2)D(-6,4);(3)M(-2,0)
【解析】
(1)由题意将y=0和x=0分别代入即可求出点A、B的坐标,进而求出边AB的长;
(2)根据题意作DH⊥轴于H,并利用全等三角形的判定与性质求得△DAH≌△ABO,进而得出DH和OH的值即可;
(3)根据题意作D点关于轴的对称点为E,并连接BE交x轴于点M,△MDB的周长为,有为定值,只需满足的值最小即可,将进行转化,根据两点间线段最短即可知道此时的M即为所求,解出直线BE的解析式即可得到M点的坐标.
【详解】
解:(1)由题意直线y=x+2与x轴、y轴分别交于A、B两点,将y=0和x=0分别代入即可求出点A、B的坐标为:A(-4,0),B(0,2),
所以AB=.
(2)作DH⊥轴于H,
由于∠DHA=∠BAD=90°,
∠DAH+∠BAO=90°,
∠BAO+∠ABO=90°,
∴∠DAH=∠ABO,
又DA=AB,
∴△DAH≌△ABO(AAS),
则DH=OA=4,AH=OB=2,OH=4+2=6,
∵点D的坐标在第二象限,
∴D(-6,4).
(3)作D点关于轴的对称点为E,并连接BE交x轴于点M,
根据轴对称的性质可知,E(-6,-4),
△MDB的周长为:,有为定值,只需满足的值最小即可,
将进行转化,根据两点间线段最短即可知道此时的M即为所求,
利用待定系数法求得直线BE的解析式为,
直线与轴的交点坐标为(-2,0),
故M(-2,0).
本题考查一次函数与正方形,涉及的知识有待定系数法求一次函数解析式,坐标与图形性质,勾股定理,全等三角形的判定与性质,正方形的性质,对称性质,以及一次函数与坐标轴的交点,熟练掌握相关性质及定理是解答本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、()n.
【解析】
第1个正方形的边长是1,对角线长为;第二个正方形的边长为,对角线长为()2=2,第3个正方形的对角线长为()3;得出规律,即可得出结果.
【详解】
第1个正方形的边长是1,对角线长为;
第二个正方形的边长为,对角线长为()2=2
第3个正方形的边长是2,对角线长为2=()3;…,
∴第n个正方形的对角线长为()n;
故答案为()n.
本题主要考查了正方形的性质、勾股定理;求出第一个、第二个、第三个正方形的对角线长,得出规律是解决问题的关键.
20、6<v<2或v=4.2
【解析】
利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.
【详解】
解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).
将(0,1)、(30,300)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=2x+1;
将(0,1)、(70,420)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=6x+1;
将(0,1)、(50,300)代入y=kx+b,得:
,解得:,
∴此种情况下,y关于x的函数关系式为y=4.2x+1.
观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<2或v=4.2.
故答案为6<v<2或v=4.2
本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.
21、x=3
【解析】
先将-x移到方程右边,再把方程两边平方,使原方程化为整式方程x2=9,求出x的值,把不合题意的解舍去,即可得出原方程的解.
【详解】
解:整理得:=x+1,
方程两边平方,得:2x+10=x2+2x+1,
移项合并同类项,得:x2=9,
解得:x1=3,x2=-3,
经检验,x2=-3不是原方程的解,
则原方程的根为:x=3.
故答案为:x=3.
本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.
22、,
【解析】
(1)将已知长度的三条线段通过旋转放到同一个三角形中,利用勾股定理即可求解;
(2)过点A作于点G,在直角三角形BGA中求出AB长,算出正方形ABCD的面积、三角形APB和三角形APD的面积,作差即得四边形的面积
【详解】
解:(1)将绕点A旋转后得到,连接
绕点A旋转后得到
根据勾股定理得
(2)过点A作于点G
由(1)知,即为等腰直角三角形,
根据勾股定理得
故答案为:(1). , (2).
本题考查了旋转的性质及勾股定理和逆定理,利用旋转作出辅助线是解题的关键.
23、24.
【解析】
试题分析: ∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB=∠DAB,∠PBA=∠ABC,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AB∥CD,∴∠PAB=∠DPA,∴∠DAP=∠DPA,∴AD=DP=5,同理:PC=CB=5,
即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24.
考点:1平行四边形;2角平分线性质;3勾股定理;4等腰三角形.
二、解答题(本大题共3个小题,共30分)
24、 (1) y=x+2;(2)1.
【解析】
(1)设直线AB的解析式为y=kx+b,把A、B的坐标代入求出k、b的值即可,
(2)把y=0代入(1)所求出的解析式,便能求出C点坐标,从而利用三角形的面积公式求出三角形AOC的面积即可.
【详解】
(1)设直线AB的解析式y=kx+b,
把点A(1,1),B(0,2)代入解析式得:,
解得:k=1,b=2,
把k=1,b=2代入y=kx+b得:y=x+2,
直线AB的解析式:y=x+2;
(2)把 y=0代入y=x+2得:x+2=0,
解得:x=﹣2,
∴点C的坐标为(﹣2,0),
∴OC=2,
∵△AOC的底为2,△AOC的高为点A的纵坐标1,
∴S△ABC=2×1×=1,
故三角形AOC的面积为1.
本题考查了待定系数法求一次函数解析式和三角形的面积,解答本题的关键是明确题意,用待定系数法求出一次函数解析式.
25、6.1
【解析】
先由勾股定理求得AC的长度,再根据勾股定理的逆定理判定△ADC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
解:在Rt△ABC中,∠B=90°,
∵AB=3,BC=4,
∴AC==1,
∵CD=12,AD=13,
∵AC2+CD2=12+122=169,
AD2=169,
∴AC2+CD2=AD2,
∴∠C=90°,
∴△ACD是直角三角形,
∵点E是AD的中点,
∴CE=AD=×13=6.1.
故答案为6.1.
本题考查的是勾股定理,勾股定理的逆定理及直角三角形的性质,能根据勾股定理的逆定理判断出△ADC是直角三角形是解答此题的关键.
26、(1)b=3m;(2)个单位长度;(3)P(0,3)或(2,2)
【解析】
(1)易证△BOC≌△CED,可得BO=CE=b,DE=OC=m,可得点D坐标,代入解析式可求m和b的数量关系;
(2)首先求出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;
(3)分两种情况讨论,由等腰直角三角形的性质可求点P坐标.
【详解】
解:(1)直线y=﹣x+b中,x=0时,y=b,
所以,B(0,b),又C(m,0),
所以,OB=b,OC=m,
在和中
∴点
(2)∵m=1,
∴b=3,点C(1,0),点D(4,1)
∴直线AB解析式为:
设直线BC解析式为:y=ax+3,且过(1,0)
∴0=a+3
∴a=-3
∴直线BC的解析式为y=-3x+3,
设直线B′C′的解析式为y=-3x+c,把D(4,1)代入得到c=13,
∴直线B′C′的解析式为y=-3x+13,
当y=3时,
当y=0时,
∴△BCD平移的距离是个单位.
(3)当∠PCD=90°,PC=CD时,点P与点B重合,
∴点P(0,3)
如图,当∠CPD=90°,PC=PD时,
∵BC=CD,∠BCD=90°,∠CPD=90°
∴BP=PD
∴点P是BD的中点,且点B(0,3),点D(4,1)
∴点P(2,2)
综上所述,点P为(0,3)或(2,2)时,以P、C、D为顶点的三角形是等腰直角三角形.
本题考查一次函数综合题、等腰直角三角形的性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移性质解决问题,属于中考压轴题.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届福建省龙岩市北城中学数学九年级第一学期开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年福建省龙岩市永定区金丰片数学九年级第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年福建省龙岩市永定区、连城县九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。