年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    福建省泉州市泉港一中学、城东中学2024年数学九上开学综合测试试题【含答案】

    福建省泉州市泉港一中学、城东中学2024年数学九上开学综合测试试题【含答案】第1页
    福建省泉州市泉港一中学、城东中学2024年数学九上开学综合测试试题【含答案】第2页
    福建省泉州市泉港一中学、城东中学2024年数学九上开学综合测试试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省泉州市泉港一中学、城东中学2024年数学九上开学综合测试试题【含答案】

    展开

    这是一份福建省泉州市泉港一中学、城东中学2024年数学九上开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是( )
    A.AB=ACB.AB=BCC.BE平分∠ABCD.EF=CF
    2、(4分)若代数式有意义,则实数x的取值范围是( )
    A.x≠-3B.x>-3C.x≥-3D.任意实数
    3、(4分)下列曲线中能表示是的函数的是( )
    A.B.
    C.D.
    4、(4分)如图,矩形的对角线与交于点,过点作的垂线分别交、于、两点,若,,则的长度为( )
    A.1B.2C.D.
    5、(4分)若正比例函数y=(1﹣m)x中y随x的增大而增大,那么m的取值范围( )
    A.m>0B.m<0C.m>1D.m<1
    6、(4分)下列各点中,在反比例函数的图象上的点是( )
    A.B.C.D.
    7、(4分)某市五月份连续五天的日最高气温分别为33、30、31、31、29(单位:ºC),这组数据的众数是( )
    A.29B.30C.31D.33
    8、(4分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=3,BE=4,则阴影部分的面积是( )
    A.12B.16C.19D.25
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图是小明统计同学的年龄后绘制的频数直方图,该班学生的平均年龄是__________岁.
    10、(4分)某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:______
    11、(4分)已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
    12、(4分)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为___.
    13、(4分)计算:______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知一次函数,.
    (1)若方程的解是正数,求的取值范围;
    (2)若以、为坐标的点在已知的两个一次函数图象上,求的值;
    (3)若,求的值.
    15、(8分)(1)计算:
    (2)计算:(2+)(2﹣)+÷+
    (3)在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上且DF=BE,连接AF,BF.
    ①求证:四边形BFDE是矩形;
    ②若CF=6,BF=8,AF平分∠DAB,则DF= .
    16、(8分)如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=1.求AC的长.
    17、(10分)如图所示,图1、图2分别是的网格,网格中的每个小正方形的边长均为1.请按下列要求分别画出相应的图形,且所画图形的每个顶点均在所给小正方形的顶点上.
    (1)在图1中画出一个周长为的菱形 (非正方形);
    (2)在图2中画出一个面积为9的平行四边形,且满足,请直接写出平行四边形的周长.
    18、(10分)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,矩形ABCD的面积为20cm2,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B2;…;依此类推,则平行四边形AO4C5B的面积为________,平行四边形AOnCn+1B的面积为________.
    20、(4分)如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为_____.
    21、(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .
    22、(4分)已知y与x+1成正比例,且x=1时,y=2.则x=-1时,y的值是______.
    23、(4分)将点,向右平移个单位后与点关于轴对称,则点的坐标为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分).已知:如图4,在中,∠BAC=90°,DE、DF是的中位线,连结EF、AD. 求证:EF=AD.
    25、(10分)某校共有1000名学生,为了了解他们的视力情况,随机抽查了部分学生的视力,并将调查的数据整理绘制成直方图和扇形图.
    (1)这次共调查了多少名学生?扇形图中的、值分别是多少?
    (2)补全频数分布直方图;
    (3)在光线较暗的环境下学习的学生占对应被调查学生的比例如下表:
    根据调查结果估计该校有多少学生在光线较暗的环境下学习?
    26、(12分)如图所示的一块地,AD=8 m,CD=6 m,∠ADC=90°,AB=26 m,BC=24 m.求这块地的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    当AB=BC时,四边形DBFE是菱形.根据三角形中位线定理证明即可;当BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,当EF=FC,可证EF=BF,可得四边形DBFE是菱形,由此即可判断;
    【详解】
    解:当AB=BC时,四边形DBFE是菱形;
    理由:∵点D、E、F分别是边AB、AC、BC的中点,
    ∴DE∥BC,EF∥AB,
    ∴四边形DBFE是平行四边形,
    ∵DE=BC,EF=AB,
    ∴DE=EF,
    ∴四边形DBFE是菱形.
    故B正确,不符合题意,
    当BE平分∠ABC时,∴∠ABE=∠EBC
    ∵DE∥BC,
    ∴∠CBE=∠DEB
    ∴∠ABE =∠DEB
    ∴BD=DE
    ∴四边形DBFE是菱形,
    故C正确,不符合题意,
    当EF=FC,
    ∵BF=FC
    ∴EF=BF,
    ∴四边形DBFE是菱形,
    故D正确,不符合题意,
    故选A.
    本题考查三角形的中位线定理,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.
    2、C
    【解析】
    根据二次根式有意义的条件即可求出答案.
    【详解】
    ∵代数式有意义
    ∴x+3≥0
    ∴x≥-3.
    故选C.
    本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件.
    3、D
    【解析】
    根据函数的定义,每一个自变量x都有唯一的y值和它对应即可解题.
    【详解】
    解:由函数的定义可知,x与y的对应关系应该是一对一的关系或多对一的关系,据此排除A,B,C,
    故选D.
    本题考查了函数的定义,属于简单题,熟悉函数定义的对应关系是解题关键.
    4、B
    【解析】
    先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.
    【详解】
    解:∵EF⊥BD,∠AEO=120°,
    ∴∠EDO=30°,∠DEO=60°,
    ∵四边形ABCD是矩形,
    ∴∠OBF=∠OCF=30°,∠BFO=60°,
    ∴∠FOC=60°-30°=30°,BF=2OF,
    ∴OF=CF,
    又∵BO=BD=AC=2,
    ∴在Rt△BOF中,
    BO2+OF2=(2OF)2,
    ∴(2)2+OF2=4OF2,
    ∴OF=2,
    ∴CF=2,
    故选:B.
    本题主要考查了矩形的性质,含30°角的直角三角形的性质,以及勾股定理的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.
    5、D
    【解析】
    先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.
    【详解】
    解:∵正比例函数y=(1﹣m)x 中,y随x的增大而增大,
    ∴1﹣m>0,解得m<1.
    故选D.
    本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时,y随x的增大而增大.
    6、A
    【解析】
    根据反比例函数解析式可得xy=6,然后对各选项分析判断即可得解.
    【详解】
    解:∵,
    ∴xy=6,
    A、∵2×3=6,
    ∴点(2,3)在反比例函数图象上,故本选项正确;
    B、∵1×4=4≠6,
    ∴点(1,4)不在反比例函数图象上,故本选项错误;
    C、∵-2×3=-6≠6,
    ∴点(-2,3)不在反比例函数图象上,故本选项错误;
    D、∵-1×4=-4≠6,
    ∴点(-1,4)不在反比例函数图象上,故本选项错误.
    故选:A.
    本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.
    7、C
    【解析】
    根据众数的概念:一组数据中出现次数最多的数据为这组数据的众数即可得出答案.
    【详解】
    根据众数的概念可知,31出现了2次,次数最多,
    ∴这组数据的众数为31,
    故选:C.
    本题主要考查众数,掌握众数的概念是解题的关键.
    8、C
    【解析】
    根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.
    【详解】
    解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,
    由勾股定理得:AB==5,
    ∴正方形的面积=5×5=25,
    ∵△AEB的面积=AE×BE=×3×4=6,
    ∴阴影部分的面积=25-6=19,
    故选:C.
    本题考查了勾股定理,正方形的面积以及三角形的面积的求法,熟练掌握勾股定理是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    利用总年龄除以总人数即可得解.
    【详解】
    解:由题意可得该班学生的平均年龄为 .
    故答案为:14.4.
    本题主要考查频数直方图,解此题的关键在于准确理解频数直方图中所表达的信息.
    10、100(1+x)2=179
    【解析】
    由两次涨价的百分比平均每次为x,结合商品原价及两次涨价后的价格,即可列出关于x的一元二次方程,此题得解.
    【详解】
    解:∵两次涨价平均每次的百分比为x,
    ∴100(1+x)2=179.
    故答案为:100(1+x)2=179.
    本题考查了一元二次方程的应用.
    11、
    【解析】
    先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
    【详解】
    由根与系数的关系得:m+n=,mn=,
    ∴m2+n2=(m+n)2-2mn=()2-2×=,
    故答案为:.
    本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
    12、110
    【解析】
    延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.
    【详解】
    如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.
    ∵∠CBF=90°,
    ∴∠ABC+∠OBF=90°,
    又∵直角△ABC中,∠ABC+∠ACB=90°,
    ∴∠OBF=∠ACB,
    在△OBF和△ACB中,

    ∴△OBF≌△ACB(AAS),
    ∴AC=OB,
    同理:△ACB≌△PGC,
    ∴PC=AB,
    ∴OA=AP,
    所以,矩形AOLP是正方形,
    边长AO=AB+AC=3+4=7,
    所以,KL=3+7=10,LM=4+7=11,
    因此,矩形KLMJ的面积为10×11=110.
    本题考查勾股定理,解题的关键是读懂题意,掌握勾股定理.
    13、
    【解析】
    根据三角形法则依次进行计算即可得解.
    【详解】
    如图,
    ∵=,

    ∴.
    故答案为:.
    本题考查了平面向量,主要利用了三角形法则求解,作出图形更形象直观并有助于对问题的理解.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2);(3)-2
    【解析】
    (1)根据代入求出x的解,得到a的不等式即可求解;
    (2)联立两函数求出交点坐标,代入即可求解;
    (3)根据分式的运算法则得到
    得到A,B的方程,即可求解.
    【详解】
    (1)∵

    由题意可知,即,解得.
    (2)由题意可知为方程组的解,解方程组得.
    所以,,
    将代入上式得:.
    (3)∵
    ∴,解得.所以的值为.
    此题主要考查一次函数的应用,解题的关键是熟知一次函数的性质、二元一次方程组的解法.
    15、(1)7(2)(3)①详见解析;②10
    【解析】
    (1)按顺序先利用完全平方公式展开,进行二次根式的化简,进行平方运算,然后再按运算顺序进行计算即可;
    (2)按顺序先利用平方差公式进行展开,进行二次根式的除法,进行负指数幂的运算,然后再按运算顺序进行计算即可;
    (3)①先证明四边形DEBF是平行四边形,然后再根据有一个角是直角的平行四边形是矩形即可得结论;
    ②先利用勾股定理求出BC长,再根据平行四边形的性质可得AD长,再证明DF=AD即可得.
    【详解】
    (1)原式=2+2+1-2+4
    =7;
    (2)原式=4-3++4
    =5+=;
    (3)①∵四边形ABCD是平行四边形,
    ∴AB//CD,即BE//DF,
    又∵DF=BE,
    ∴四边形DEBF是平行四边,
    又∵DE⊥AB,
    ∴∠DEB=90°,
    ∴平行四边形BFDE是矩形;
    ②∵四边形BFDE是矩形,
    ∴∠BFD=90°,
    ∴∠BFC=90°,
    ∴BC==10,
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=10,AB//CD,
    ∴∠FAB=∠DFA,
    ∵∠DAF=∠FAB,
    ∴∠DAF=∠DFA,
    ∴DF=AD=10.
    本题考查了二次根式的混合运算,平行四边形的性质,矩形的判定与性质,勾股定理等知识,熟练掌握相关知识是解题的关键.
    16、AC=
    【解析】
    根据勾股定理求出BD,设AC=x,得到AD=x﹣6,根据勾股定理列方程,解方程得到答案.
    【详解】
    解:∵CD⊥AB,
    ∴∠ADC=∠BDC=90°,
    在Rt△BCD中,BD==6,
    设AC=AB=x,则AD=x﹣6,
    在Rt△ACD中,AC2=AD2+CD2,即x2=(x﹣6)2+12,
    解得,x=,即AC=.
    本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运用.
    17、(1)见解析;(2)见解析,周长为:+2.
    【解析】
    (1)利用数形结合的思想画出边长为 菱形即可.
    (2)利用数形结合的思想解决问题即可.
    【详解】
    解:(1)∵菱形周长为,
    ∴菱形的边长为,
    如图1所示,菱形ABCD即为所求.
    (2)如图2中,平行四边形MNPQ即为所求.
    ∵如图所示,∠MNP=45°,∠MPN=90°,
    ∴NP=MP,
    又∵面积为9,
    ∴NP∙MP=9,
    ∴NP=MP=3,
    ∴MN=,
    ∴周长为:+2.
    本题考查菱形的判定和性质,平行四边形的判定和性质,数形结合的思想等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    18、不是,理由见解析.
    【解析】
    先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.
    【详解】
    解:如图,设梯子下滑至CD,
    ∵Rt△OAB中,AB=2.5m,AO=2.4m,
    ∴OB=m,
    同理,Rt△OCD中,
    ∵CD=2.5m,OC=2.4-0.4=2m,
    ∴OD=m,
    ∴BD=OD-OB=1.5-0.7=0.8(m).
    答:梯子底端B向外移了0.8米.
    本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、,
    【解析】
    根据矩形的性质求出△AOB的面积等于矩形ABCD的面积的,求出△AOB的面积,再分别求出△ABO1、△ABO2、△ABO3、△ABO4的面积,即可得出答案.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AO=CO,BO=DO,DC∥AB,DC=AB,
    ∴S△ADC=S△ABC=S矩形ABCD=×20=10,
    ∴S△AOB=S△BCO=S△ABC=×10=5,
    ∴S△ABO1=S△AOB=×5=,
    ∴S△ABO2=S△ABO1=,
    S△ABO3=S△ABO2=,
    S△ABO4=S△ABO3=,
    ∴S平行四边形AO4C5B=2S△ABO4=2×=,
    平行四边形AOnCn+1B的面积为,
    故答案为:;.
    本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.
    20、a<c<b
    【解析】
    根据直线所过象限可得a<0,b>0,c>0,再根据直线陡的情况可判断出b>c,进而得到答案.
    【详解】
    根据三个函数图象所在象限可得a<0,b>0,c>0,
    再根据直线越陡,|k|越大,则b>c.
    则b>c>a,
    故答案为a<c<b.
    21、y=﹣1x+1.
    【解析】
    由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.
    【详解】
    ∵点P(1,2)关于x轴的对称点为P′,
    ∴P′(1,﹣2),
    ∵P′在直线y=kx+3上,
    ∴﹣2=k+3,解得:k=﹣1,
    则y=﹣1x+3,
    ∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.
    故答案为y=﹣1x+1.
    考点:一次函数图象与几何变换.
    22、2
    【解析】
    设y=k(x+1),把x=1,y=2代入,求的k,确定x,y的关系式,然后把x=-1,代入解析式求对应的函数值即可.
    【详解】
    解:∵y与x+1成正比例,
    ∴设y=k(x+1),
    ∵x=1时,y=2,
    ∴2=k×2,即k=1,
    所以y=x+1.
    则当x=-1时,y=-1+1=2.
    故答案为2.
    本题考查了正比例函数关系式为:y=kx(k≠2)),只需一组对应量就可确定解析式.也考查了给定自变量会求对应的函数值.
    23、 (4,-3)
    【解析】
    让点A的纵坐标不变,横坐标加4即可得到平移后的坐标;关于x轴对称的点即让横坐标不变,纵坐标互为相反数即可得到点的坐标.
    【详解】
    将点A向右平移4个单位后,横坐标为0+4=4,纵坐标为3
    ∴平移后的坐标是(4,3)
    ∵平移后关于x轴对称的点的横坐标为4,纵坐标为-3
    ∴它关于x轴对称的点的坐标是(4,-3)
    此题考查点的平移,关于x轴对称点的坐标特征,解题关键在于掌握知识点
    二、解答题(本大题共3个小题,共30分)
    24、证明:因为DE,DF是△ABC的中位线
    所以DE∥AB,DF∥AC …………. 2分
    所以四边形AEDF是平行四边形 ………….… 5分
    又因为∠BAC=90°
    所以平行四边形AEDF是矩形……………………分
    所以EF=AD …………………………….….………10分
    【解析】略
    25、(1)200名,a=18%,b=20%;(2)见解析;(3)270名
    【解析】
    (1)根据第四组的频数与其所占的百分比求出被调查的学生数.
    (2)根据各组所占的百分比分别计算他们的频数,从而补全频数分布直方图.
    (3)首先计算各组在光线较暗的环境下学习的学生数,再根据被抽取的学生数所占的比例进行估算该校有多少学生在光线较暗的环境下学习.
    【详解】
    (1)这次共调查的学生为:(名).
    ..
    (2)0.35~0.65的频数为:;0.95~1.25的频数为:.
    补全频数分布直方图如下:
    (3)各组在光线较暗的环境下学习的学生总数为:
    (名).
    该校学生在光线较暗的环境下学习的有:(名).
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    26、96 m2 .
    【解析】
    先连接AC,在Rt△ACD中,利用勾股定理可求AC,进而求出AC2+BC2=AB2,利用勾股定理逆定理可证△ABC是直角三角形,再利用S四边形ABCD=S△ABC-S△ACD,即可求地的面积.
    【详解】
    解:连接AC,则△ADC为直角三角形,
    因为AD=8,CD=6,
    所以AC=10.
    在△ABC中,AC=10,BC=24,AB=26.
    因为102+242=262,
    所以△ABC也是直角三角形.
    所以这块地的面积为S=S△ABC-S△ADC=AC·BC-AD·CD=×10×24-×8×6=120-24=96 m2.
    所以这块地的面积为96 m2 .
    故答案为96 m2
    本题考查了勾股定理及其逆定理的应用.关键是根据∠ADC =90°,构造直角三角形ACD,并证出△ABC是直角三角形.
    题号





    总分
    得分
    视力
    0.35~0.65
    0.65~0.95
    0.95~1.25
    1.25~l.55
    比例

    相关试卷

    福建省泉州市泉港一中学2025届数学九上开学达标测试试题【含答案】:

    这是一份福建省泉州市泉港一中学2025届数学九上开学达标测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省泉州市港泉区2024年数学九上开学学业水平测试模拟试题【含答案】:

    这是一份福建省泉州市港泉区2024年数学九上开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省泉港一中学、城东中学2024年九年级数学第一学期开学质量检测模拟试题【含答案】:

    这是一份福建省泉港一中学、城东中学2024年九年级数学第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map