福建省泉州市实验中学2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列结论中,错误的有:( )
①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;
③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.
A.1个B.2个C.3个D.4个
2、(4分)弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是( )
A.在没挂物体时,弹簧的长度为10cm
B.弹簧的长度随物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量
C.如果物体的质量为mkg,那么弹簧的长度ycm可以表示为y=2.5m+10
D.在弹簧能承受的范围内,当物体的质量为4kg时,弹簧的长度为20cm
3、(4分)如图,在RtΔABC中,∠C=90°,BC=6,AC=8,则AB的长度为( )
A.7B.8C.9D.10
4、(4分)若分式的值为0,则x的值是( )
A.2或﹣2B.2C.﹣2D.0
5、(4分)在▱ABCD中,∠C=32°,则∠A的度数为( )
A.148°B.128°C.138°D.32°
6、(4分)方程3x2﹣7x﹣2=0的根的情况是( )
A.方程没有实数根
B.方程有两个不相等的实数根
C.方程有两个相等的实数很
D.不确定
7、(4分)一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,然后再按演讲内容占50%、演讲能力占40% 、演讲效果占10%的比例计算选手的综合成绩.某选手的演讲内容、演讲能力、演讲效果成绩依次为85,95,95,则该选手的综合成绩为 ( )
A.92B.88C.90D.95
8、(4分)如图,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为( )
A.1B.C.2D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为 .
10、(4分)已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.
11、(4分)甲、乙两同学参加学校运动员铅球项目选拔赛,各投掷6次,记录成绩,计算平均数和方差的结果为:,则成绩较稳定的是_______(填“甲”或“乙”).
12、(4分)在一次射击比赛中,甲、乙两名运动员 10 次射击的平均成绩都是 7 环,其中甲的成绩的方差为 1.2,乙的成绩的方差为 3.9,由此可知_____的成绩更稳定.
13、(4分)一次函数y=kx+b的图象如图所示,若点A(3,m)在图象上,则m的值是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知中,,请用尺规作出AB边的高线请留作图痕迹,不写作法
15、(8分)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段、分别表示父、子俩送票、取票过程中,离体育馆的路程(米)与所用时间(分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):
(1)求点的坐标和所在直线的函数关系式
(2)小明能否在比赛开始前到达体育馆
16、(8分)如图,矩形中,,,过对角线的中点的直线分别交,边于点,连结,.
(1)求证:四边形是平行四边形.
(2)当四边形是菱形时,求及的长.
17、(10分)已知y+6与x成正比例,且当x=3时,y=-12,求y与x的函数关系式.
18、(10分)阅读下面的解题过程,解答后面的问题:
如图,在平面直角坐标系中, , ,为线段的中点,求点的坐标;
解:分别过,做轴的平行线,过,做轴的平行线,两组平行线的交点如图所示,设,则,,
由图可知:
线段的中点的坐标为
(应用新知)
利用你阅读获得的新知解答下面的问题:
(1)已知,,则线段的中点坐标为
(2)平行四边形中,点,,的坐标分别为,,,利用中点坐标公式求点的坐标。
(3)如图,点在函数的图象上, ,在轴上,在函数的图象上 ,以,,,四个点为顶点,且以为一边构成平行四边形,直接写出所有满足条件的点坐标。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是________米.
20、(4分)如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.
21、(4分)如图,△ACB≌△DCE,∠ACD=50°,则∠BCE的度数为_____.
22、(4分)计算:÷=_____.
23、(4分)甲、乙两名射击手的100次测试的平均成绩都是9环,方差分别是S2甲=0.8,S2乙=0.35,则成绩比较稳定的是_____(填“甲”或“乙”).
二、解答题(本大题共3个小题,共30分)
24、(8分) (1)计算:;
(2)解方程:.
25、(10分)如图1,将纸片折叠,折叠后的三个三角形可拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.
(1)将纸片按图2的方式折叠成一个叠合矩形,则操作形成的折痕分别是线段_______,__________;___________.
(2)将纸片按图3的方式折叠成一个叠合矩形,若,,求的长;
(3)如图4,四边形纸片满足,,,,,小明把该纸片折叠,得到叠合正方形,请你帮助画出一种叠合正方形的示意图,并求出、的长.
26、(12分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.
(1)甲、乙两种图书每本价格分别为多少元?
(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④.
【详解】
相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;
放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;
等边三角形的角都是60°,一定相似,③正确;
钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;
矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.
有2个错误,故选B.
本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.
2、B
【解析】
因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.
【详解】
解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;
B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;
C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;
D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;
故选B.
点评:此题考查了函数关系式,主要考查了函数的定义和结合几何图形列函数关系式.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
3、D
【解析】
根据勾股定理即可得到结论.
【详解】
在Rt△ABC中,∠C=90°,BC=6,AC=8,
∴AB==10,
故选D.
本题考查了勾股定理,熟练掌握勾股定理是解题的关键.
4、A
【解析】
直接利用分式的值为零则分子为零进而得出答案.
【详解】
∵分式的值为0,
∴x1﹣4=0,
解得:x=1或﹣1.
故选A.
此题主要考查了分式的值为零的条件,正确把握定义是解题关键.
5、D
【解析】
根据平行四边形的性质:对角相等即可求出的度数.
【详解】
四边形是平行四边形,
,
,
.
故选:.
本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等.
6、B
【解析】
先求一元二次方程的判别式的值,由△与0的大小关系来判断方程根的情况即可求解.
【详解】
由根的判别式△=b2﹣4ac=(﹣7)2﹣4×3×(﹣2)=49+24=73>0,
所以方程有两个不相等的实数根.
故选B.
本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
7、C
【解析】
分析:根据加权平均数公式计算即可,若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则叫做这n个数的加权平均数,此题w1+w2+w3+…+wn=50%+40% +10%=1.
详解:由题意得,
85×50%+95×40%+95×10%=90(分).
点睛:本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解答本题的关键.
8、C
【解析】
首先根据反比例函数图像上的点与原点所连的线段、坐标轴、向坐标轴做垂线所围成的直角三角形面积S的关系即S= ,得出,再根据反比例函数的对称性可知:OB=OD,得出得出结果.
【详解】
解:根据反比例函数得对称性可知:
OB=OD,AB=CD,
∵ 四边形ABCD的面积等于,
又
∴S四边形ABCD=2.
故答案选:C.
本题考查的是一次函数与反比例函数的交点问题,解题关键是熟知反比例函数中的几何意义,即图像上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积的关系即.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
根据题意确定点A/的纵坐标,根据点A/落在直线y=-x上,求出点A/的横坐标,确定△OAB沿x轴向左平移的单位长度即可得到答案.
解:由题意可知,点A移动到点A/位置时,纵坐标不变,
∴点A/的纵坐标为6,
-x=6,解得x=-1,
∴△OAB沿x轴向左平移得到△O/A/B/位置,移动了1个单位,
∴点B与其对应点B/间的距离为1.
故答案为1.
“点睛”本题考查的是一次函数图象上点的坐标特征和图形的平移,确定三角形OAB移动的距离是解题的关键.
10、x≥1.
【解析】
试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.
故答案为x≥1.
考点: 一次函数与一元一次不等式.
11、乙.
【解析】
方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.
【详解】
解:∵S甲2=1.61>S乙2=1.51,∴成绩较稳定的是是乙.
本题考查方差的意义.方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.
12、甲
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
解:因为S甲2=1.2<S乙2=3.9,方差小的为甲,所以本题中成绩比较稳定的是甲.
故答案为甲;
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
13、2.5
【解析】
先用待定系数法求出直线解析式,再将点A代入求解可得.
【详解】
解:将(-2,0)、(0,1)代入y=kx+b,得:,
解得:
∴y=x+1,
将点A(3,m)代入,得:
即
故答案为:2.5
本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、作图见解析.
【解析】
延长AB,以点C为圆心,大于点C到直线AB的距离的长为半径画弧,交AB的延长线于点M和点N,再作线段MN的垂直平分线CD即可.
【详解】
如图,延长AB,
以点C为圆心,大于点C到直线AB的距离的长为半径画弧,
交AB的延长线于点M和点N,
分别以M、N为圆心,以大于MN一半长为半径画弧,两弧交于一点,过点C以及这点作直线,交MN于点D,
则线段CD即为所求作的.
本题考查作图-基本作图,掌握作垂直平分线的基本步骤为解题关键.
15、 (1) 点B的坐标为(15,900),直线AB的函数关系式为:.
(2)小明能在比赛开始前到达体育馆.
【解析】
(1)从图象可以看出:父子俩从出发到相遇时花费了15分钟,设小明步行的速度为x米/分,则小明父亲骑车的速度为3x米/分,则路程和为1,即可列出方程求出小明的速度,再根据A,B两点坐标用待定系数法确定函数关系式;(2)直接利用一次函数的性质即可求出小明的父亲从出发到体育馆花费的时间,经过比较即可得出是否能赶上.
【详解】
(1)从图象可以看出:父子俩从出发到相遇时花费了15分钟
设小明步行的速度为x米/分,则小明父亲骑车的速度为3x米/分
依题意得:15x+45x=1.
解得:x=2.
所以两人相遇处离体育馆的距离为
2×15=900米.
所以点B的坐标为(15,900).
设直线AB的函数关系式为s=kt+b(k≠0).
由题意,直线AB经过点A(0,1)、B(15,900)
得:解之,得
∴直线AB的函数关系式为:.
(2)在中,令S=0,得.
解得:t=3.
即小明的父亲从出发到体育馆花费的时间为3分钟,因而小明取票的时间也为3分钟.
∵3<25,∴小明能在比赛开始前到达体育馆.
16、(1)证明见解析;(2)BE=5,EF=.
【解析】
(1)根据平行四边形的性质,判定,得出四边形的对角线互相平分,进而得出结论;
(2)在中,由勾股定理得出方程,解方程求出,由勾股定理求出,得出,再由勾股定理求出,即可得出的长.
【详解】
(1)证明:四边形是矩形,是的中点,
,,,,
,
在和中,,
,
,
四边形是平行四边形;
(2)解:当四边形是菱形时,,
设,则,.
在中,,
,
解得,即,
,
,
,
,
.
本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.
17、y=﹣2x﹣1.
【解析】
试题分析:先根据y+1与x成正比例关系,假设函数解析式,再根据已知的一对对应值,求得系数k即可.
解:∵y+1与x成正比例,
∴设y+1=kx(k≠0),
∵当x=3时,y=﹣12,
∴﹣12+1=3k,
解得k=﹣2
∴y+1=﹣2x,
∴函数关系式为y=﹣2x﹣1.
18、 (1)线段的中点坐标是;(2)点的坐标为;(3)符合条件的点坐标为或.
【解析】
(1)直接套用中点坐标公式,即可得出中点坐标;
(2)根据AC、BD的中点重合,可得出,代入数据可得出点D的坐标;
(3)当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标.
【详解】
解:(1)AB中点坐标为,即AB的中点坐标是:(1,1);
(2)根据平行四边形的性质:对角线互相平分,可知、的中点重合,
由中点坐标公式可得:,
代入数据,得:,
解得:,,所以点的坐标为;
(3)当为该平行四边形一边时,则,对角线为、或、;
故可得:,或,.
故可得或,
,
或
代入到中,可得或.
综上,符合条件的点坐标为或.
本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,综合性较强.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.10
【解析】
由题意可知,将木块展开,
相当于是AB+2个正方形的宽,
∴长为2+0.2×2=2.4米;宽为1米.
于是最短路径为:
故答案是:2.1.
20、2
【解析】
设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.
【详解】
作MG⊥DC于G,如图所示:
设MN=y,PC=x,
根据题意得:GN=2,MG=|10-1x|,
在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,
即y1=21+(10-1x)1.
∵0<x<10,
∴当10-1x=0,即x=2时,y1最小值=12,
∴y最小值=2.即MN的最小值为2;
故答案为:2.
本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.
21、50°
【解析】
根据全等三角形对应角相等可得∠ACB=∠DCE,然后根据∠ACB+∠BCD=∠DCE+∠BCD得出答案.
【详解】
解: ∵△ACB≌△DCE
∴∠ACB=∠DCE
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠BCE=∠ACD=50°
故答案为:50°.
本题考查全等三角形的性质,题目比较简单.
22、1
【解析】
直接利用二次根式的除法运算法则得出即可.
【详解】
解:÷==1.
故答案为1.
本题考查二次根式的除法运算,根据二次根式的运算法则得出是解题关键.
23、乙
【解析】
根据方差的定义,方差越小数据越稳定,即可得出答案.
【详解】
解:∵甲、乙的平均成绩都是9环,方差分别是S甲2=0.8,S乙2=0.35,
∴S甲2>S乙2,
∴成绩比较稳定的是乙;
故答案为:乙.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、解答题(本大题共3个小题,共30分)
24、 (1);(2),
【解析】
见详解.
【详解】
解:(1)
(2),,
本题考查平方根的化简,要熟练掌握平方差公式.
25、(1)AE,GF,1:2;(2)13;(3)AD =1,BC =7;
【解析】
(1)根据题意得出操作形成的折痕分别是线段AE、GF;由折叠的性质得出△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,得出S矩形AEFG=S▱ABCD,即可得出答案;
(2)由矩形的性质和勾股定理求出FH,即可得出答案;
(3)由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,由叠合正方形的性质得出BM=FM=4,由勾股定理得出GM=CM==3,得出AD=BG=BM-GM=1,BC=BM+CM=7;
【详解】
解:(1)根据题意得:操作形成的折痕分别是线段AE、GF;
由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,
∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,
∴S矩形AEFG=S▱ABCD,
∴S矩形AEFG:S▱ABCD=1:2;
故答案为:AE,GF,1:2;
(2)∵四边形EFGH是矩形,
∴∠HEF=90°,
∴FH==13,
由折叠的性质得:AD=FH=13;
(3)图5所示:
如图4所示:由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,
∵四边形EFMB是叠合正方形,
∴BM=FM=4,
∴GM=CM==3,
∴AD=BG=BM-GM=1,BC=BM+CM=7;
此题考查折叠的性质,正方形的性质,勾股定理,梯形面积,解题关键在于掌握折叠的性质.
26、(1)乙图书每本价格为20元,则甲图书每本价格是50元;(2)该图书馆最多可以购买28本乙图书.
【解析】
根据两种图书的倍数关系,设乙图书每本的价格为x元,则甲图书每本的价格为2.5x元,再根据同样多的钱购买图书数量相差24本,列方程,求出方程的解即可,分式方程一定要验根.
设购买甲图书m本,则购买乙图书(2m+8)本,再根据总经费不超过1060元,列不等式,求出不等式的解集,进而求得最多可买乙图书的本数.
【详解】
解:(1)设乙图书每本价格为元,则甲图书每本价格是元,
根据题意可得:,
解得:,
经检验得:是原方程的根,
则,
答:乙图书每本价格为20元,则甲图书每本价格是50元;
(2)设购买甲图书本数为,则购买乙图书的本数为:,
故,
解得:,
故,
答:该图书馆最多可以购买28本乙图书.
本题考查分式方程的运用,一元一次不等式组的运用,理解题意,抓住题目蕴含的数量关系解决问题.
题号
一
二
三
四
五
总分
得分
批阅人
物体的质量(kg)
0
1
2
3
4
5
弹簧的长度(cm)
10
12.5
15
17.5
20
22.5
福建省泉州市泉港区第一中学2024-2025学年九年级数学第一学期开学调研试题【含答案】: 这是一份福建省泉州市泉港区第一中学2024-2025学年九年级数学第一学期开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省泉州市培元中学2024-2025学年数学九年级第一学期开学监测试题【含答案】: 这是一份福建省泉州市培元中学2024-2025学年数学九年级第一学期开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省福州文博中学2024-2025学年九上数学开学统考模拟试题【含答案】: 这是一份福建省福州文博中学2024-2025学年九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。