福建省三明市县2024年九上数学开学监测模拟试题【含答案】
展开
这是一份福建省三明市县2024年九上数学开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)甲、乙、丙三人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是,.,在本次射击测试中,成绩最稳定的是( )
A.甲B.乙C.丙D.无法确定
2、(4分)无理数+1在两个整数之间,下列结论正确的是( )
A.2-3之间B.3-4之间C.4-5之间D.5-6之间
3、(4分)下列调查中,适宜采用普查方式的是( )
A.调查全国中学生心理健康现状
B.调查一片试验田里五种大麦的穗长情况
C.要查冷饮市场上冰淇淋的质量情况
D.调查你所在班级的每一个同学所穿鞋子的尺码情况
4、(4分)我们知道正五边形不能进行平面镶嵌,若将三个全等的正五边形按如图所示拼接在一起,那么图中的∠1的度数是( )
A.18°B.30°C.36°D.54°
5、(4分)下列曲线中能表示y是x的函数的为( )
A.B.C.D.
6、(4分)下列度数不可能是多边形内角和的是( )
A.B.C.D.
7、(4分)一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、﹣1、2、0,其中判断错误的是( )
A.前一组数据的中位数是200
B.前一组数据的众数是200
C.后一组数据的平均数等于前一组数据的平均数减去200
D.后一组数据的方差等于前一组数据的方差减去200
8、(4分)函数y=5x﹣3的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,小明作出了边长为2的第1个正△A1B1C1 , 算出了正△A1B1C1的面积. 然后分别取△A1B1C1的三边中点A2、B2、C2 , 作出了第2个正△A2B2C2 , 算出了正△A2B2C2的面积. 用同样的方法,作出了第3个正△A3B3C3 , 算出了正△A3B3C3的面积……,由此可得,第2个正△A2B2C2的面积是_______,第n个正△AnBnCn的面积是______
10、(4分)如图,点D是等边内部一点,,,.则的度数为=________°.
11、(4分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.
12、(4分)一次函数的图象如图所示,当时,的取值范围为__________.
13、(4分)已知是方程的一个根,_________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?
15、(8分)如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45∘.
(1)求直线BC的解析式;
(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;
16、(8分)解不等式组并在数轴上表示出不等式组的解集.
17、(10分)又到一年丰收季,重庆外国语学校“国内中考、高考、国内保送、出国留学”捷报频传.作为准初三的初二年级学生希望抓紧暑期更好的提升自我.张同学采用随机抽样的方式对初二年级学生此次暑期生活的主要计划进行了问卷调查,并将调查结果按照“A社会实践类、B学习提高类、C游艺娱乐类、D其他”进行了分类统计,并绘制了如图1和如图2两幅不完整的统计图.(接受调查的每名同学只能在四类中选择其中一种类型,不可多选或不选.)请根据图中提供的信息完成以下问题.
(1)扇形统计图中表示B类的扇形的圆心角是 度,并补全条形统计图;
(2)张同学已从被调查的同学中确定了甲、乙、丙、丁四名同学进行开学后的经验交流,并计划在这四人中选出两人的宝贵经验刊登在本班班刊上.请利用画树状图或列表的方法求出甲同学的经验刊登在班刊上的概率.
18、(10分)如图,在▱ABCD中,点E是CD的中点,连接BE并延长交AD延长线于点F.
(1)求证:点D是AF的中点;
(2)若AB=2BC,连接AE,试判断AE与BF的位置关系,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分) “a的3倍与b的差不超过5”用不等式表示为__________.
20、(4分)正方形ABCD中,,P是正方形ABCD内一点,且,则的最小值是______.
21、(4分) 若10个数的平均数是3,方差是4,现将这10个数都扩大2倍,则这组新数据的方差是_____.
22、(4分)如图,在矩形ABCD中,E、F、G、H分别是四条边的中点,HF=2,EG=4,则四边形EFGH的面积为____________.
23、(4分)如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件_________(只添一个即可),使四边形ABCD是平行四边形.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.
(l)当点C与点O重合时,DE= ;
(2)当CE∥OB时,证明此时四边形BDCE为菱形;
(3)在点C的运动过程中,直接写出OD的取值范围.
25、(10分)如图,在直角坐标系中,点为坐标原点,点,分别在轴,轴的正半轴上,矩形的边,,反比例函数的图象经过边的中点.
(1)求该反比例函数的表达式;
(2)求的面积.
26、(12分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
运动员甲测试成绩表
(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为、、)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
解:∵S甲2=0.61,S乙2=0.35,S丙2=1.13,
∴S丙2>S甲2>S乙2,
∴在本次射击测试中,成绩最稳定的是乙;
故选:B.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、B
【解析】
先找出和相邻的两个整数,然后再求+1在哪两个整数之间
【详解】
解:∵22=1,32=9,
∴2<<3;
∴3<+1<1.
故选:B.
此题主要考查了无理数的估算能力,需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.
3、D
【解析】
分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
详解:A、了解全国中学生心理健康现状调查范围广,适合抽样调查,故A错误;
B、了解一片试验田里五种大麦的穗长情况调查范围广,适合抽样调查,故B错误;
C、了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C错误;
D、调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D正确;
故选D.
点睛:本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大.
4、C
【解析】
正多边形镶嵌有三个条件限制:①边长相等;②顶点公共;③在一个顶点处各正多边形的内角之和为360°.多边形内角和定理:(n-2)•180 (n≥3)且n为整数).
【详解】
解:正五边形的内角:(5-2)×180°÷5=108°,
∴∠1=360°-108°×3=36°,
故选:C.
此题考查平面镶嵌,熟练运用多边形内角和公式是解题的关键.
5、D
【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断.
【详解】
A、B、C选项,一个x的值对应有两个y值,故不能表示y是x的函数,错误,
D选项,x的每一个值,y都有唯一确定的值与它对应,正确,
故选D.
本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
6、B
【解析】
根据多边形内角和定理求解即可.
【详解】
正多边形内角和定理n边形的内角的和等于: (n - 2)×180°(n大于等于3且n为整数)
A.,正确;
B.,错误;
C.,正确;
D.,正确;
故答案为:B.
本题考查了多边形内角和的问题,掌握多边形内角和定理是解题的关键.
7、D
【解析】
由中位数、众数、平均数及方差的意义逐一判断可得.
【详解】
解:A.前一组数据的中位数是200,正确,此选项不符合题意;
B.前一组数据的众数是200,正确,此选项不符合题意;
C.后一组数据的平均数等于前一组数据的平均数减去200,正确,此选项不符合题意;
D.后一组数据的方差等于前一组数据的方差,此选项符合题意;
故选D.
本题考查方差、中位数、众数、平均数,解题的关键是掌握中位数、众数、平均数及方差的意义.
8、B
【解析】
根据一次函数图像与k,b的关系得出结论.
【详解】
解:因为解析式y=5x﹣3中,k=5>0,图象过一、三象限,b=﹣3<0,图象过一、三、四象限,故图象不经过第二象限,故选B.
考查了一次函数图像的性质,熟练掌握一次函数图像与k,b的关系是解决本题的关键,也可以列表格画出图像判断.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是.
【详解】
正△A1B1C1的面积是×22==,
∵△A2B2C2与△A1B1C1相似,并且相似比是1:2,
∴面积的比是1:4,
则正△A2B2C2的面积是× ==;
∵正△A3B3C3与正△A2B2C2的面积的比也是1:4,
∴面积是×==;
依此类推△AnBnCn与△An﹣1Bn﹣1Cn﹣1的面积的比是1:4,
第n个三角形的面积是.
故答案是: , .
考查了相似三角形的判定与性质,以及等边三角形的性质,找出题中的规律是解题的关键.
10、1
【解析】
将△BCD绕点B逆时针旋转60°得到△ABD',根据已知条件可以得到△BDD'是等边三角形,△ADD'是直角三角形,即可求解.
【详解】
将△BCD绕点B逆时针旋转60°得到△ABD',
∴BD=BD',AD'=CD,
∴∠DBD'=60°,
∴△BDD'是等边三角形,
∴∠BDD'=60°,
∵BD=1,DC=2,AD=,
∴DD'=1,AD'=2,
在△ADD'中,AD'2=AD2+DD'2,
∴∠ADD'=90°,
∴∠ADB=60°+90°=1°,
故答案为1.
本题考查旋转的性质,等边三角形和直角三角形的性质;能够通过图形的旋转构造等边三角形和直角三角形是解题的关键.
11、
【解析】
过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.
【详解】
如图,过点D作DF⊥BC于点F,
∵四边形ABCD是菱形,
∴BC=CD,AD∥BC,
∵∠DEB=90°,AD∥BC,
∴∠EBC=90°,且∠DEB=90°,DF⊥BC,
∴四边形DEBF是矩形,
∴DF=BE,DE=BF,
∵点C的横坐标为5,BE=3DE,
∴BC=CD=5,DF=3DE,CF=5﹣DE,
∵CD2=DF2+CF2,
∴25=9DE2+(5﹣DE)2,
∴DE=1,
∴DF=BE=3,
设点C(5,m),点D(1,m+3),
∵反比例函数y=图象过点C,D,
∴5m=1×(m+3),
∴m=,
∴点C(5,),
∴k=5×=,
故答案为:
本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.
12、
【解析】
根据函数图象与y轴的交点坐标和函数的增减性可直接解答.
【详解】
解:∵一次函数y=kx+b(k≠0)与y轴的交点坐标为(0,3),y随x的增大而减小,
∴当x>0时,y
相关试卷
这是一份福建省三明市梅列区梅列、永安2024年数学九上开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份福建省三明建宁县联考2024-2025学年九上数学开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届福建省三明市九上数学开学考试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。