福建省石狮市自然门学校2024年数学九年级第一学期开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)以下说法正确的是( )
A.在同一年出生的400人中至少有两人的生日相同
B.一个游戏的中奖率是1%,买100张奖券,一定会中奖
C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件
D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是
2、(4分)为了解某班学生双休日户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:则关于“户外活动时间”这组数据的众数、中位数、平均数分别是( )
A.B.
C.D.
3、(4分)下列各式中,能用公式法分解因式的是( )
①; ②; ③; ④; ⑤
A.2个B.3个C.4个D.5个
4、(4分)如图,点为菱形边上的一个动点,并沿→→→的路径移动,设点E经过的路径长为,的面积为,则下列图象能大致反映与的函数关系的是( )
A.B.
C.D.
5、(4分)若把分式的x、y同时扩大3倍,则分式值( )
A.不变B.扩大为原来的3倍C.缩小为原来的D.扩大为原来的9倍
6、(4分)关于x的一元二次方程有两个不相等的实数根,则实数m的取值范围为( )
A.B.C.D.
7、(4分)下列命题正确的是( )
A.两条对角线互相平分且相等的四边形是菱形
B.两条对角线互相平分且垂直的四边形是矩形
C.两条对角线互相垂直且相等的四边形是正方形
D.角平分线上的点到角两边的距离相等
8、(4分)如图, 在中,,,,为边上一个动点,于点,上于点,为的中点,则的最小值是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知函数,则自变量x的取值范围是___________________.
10、(4分)若分式方程有增根,则a的值为_____.
11、(4分)如果根式有意义,那么的取值范围是_________.
12、(4分)观察下列式子:
当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5
n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10
n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…
根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=_____,b=_____,c=_____.
13、(4分)关于x的一元二次方程x2﹣2x+k﹣1=0没有实数根,则k的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一架5米长的梯子AB斜靠在一面墙上,梯子底端B到墙底的垂直距离BC为3米.
(1)求这个梯子的顶端A到地面的距离AC的值;
(2)如果梯子的顶端A沿墙AC竖直下滑1米到点D处,求梯子的底端B在水平方向滑动了多少米?
15、(8分)某经销商从市场得知如下信息:
他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.
(1)试写出y与x之间的函数关系式;
(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;
(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
16、(8分)已知命题“若 a>b,则 a2>b2”.
(1)此命题是真命题还是假命题?若是真命题,请给予证明;若是假命题,请举出一个 反例.
(2)写出此命题的逆命题,并判断此逆命题的真假;若是真命题,请给予证明;若是假 命题,请举出一个反例.
17、(10分)已知在菱形ABCD中,对角线AC、BD交于点O,AB=2AO;(1)如图1,求∠BAC的度数;(2)如图2,P为菱形ABCD外一点,连接AP、BP、CP,若∠CPB=120°,求证:CP+BP=AP;(3)如图3,M为菱形ABCD外一点,连接AM、CM、DM,若∠AMD=150°,
CM=2,DM=2,求四边形ACDM的面积。
18、(10分)直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B 两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B的坐标.
(2)求直线BC的解析式.
(3)直线 EF 的解析式为y=x,直线EF交AB于点E,交BC于点 F,求证:S△EBO=S△FBO.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在□ABCD中,对角线AC、BD相交于点O,AB=OB,E为AC上一点,BE平分∠ABO,EF⊥BC于点F,∠CAD=45°,EF交BD于点P,BP=,则BC的长为_______.
20、(4分)在平行四边形ABCD中,AD=13,BAD和ADC的角平分线分别交BC于E,F,且EF=6,则平行四边形的周长是____________________
21、(4分)关于x的不等式组的解集为x<3,那么m的取值范围是_____.
22、(4分)在△ABC中,AC=BC=,AB=2,则△ABC中的最小角是_____.
23、(4分)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)国家规定,中小学生每天在校体育活动时间不低于.为此,某县就“你每天在校体育活动时间是多少”的问题,随机调查了辖区内300名初中学生.根据调查结果绘制成统计图如图所示,其中组为,组为,组为,组为.
请根据上述信息解答下列问题:
(1)本次调查数据的中位数落在______组内,众数落在______组内;
(2)若该辖区约4000名初中生,请你估计其中达到国家规定体育活动时间的人数;
(3)若组取,组取,组取,组取,试计算这300名学生平均每天在校体育活动的时间.
25、(10分)A、B 两乡分别由大米 200 吨、300 吨.现将这些大米运至 C、D 两个粮站储存.已知 C 粮站可 储存 240 吨,D 粮站可储存 200 吨,从 A 乡运往 C、D 两处的费用分别为每吨 20 元和 25 元,B 乡 运往 C、D 两处的费用分别为每吨 15 元和 18 元.设 A 乡运往 C 粮站大米 x 吨.A、B 两乡运往两 个粮站的运费分别为 yA、yB 元.
(1)请填写下表,并求出 yA、yB 与 x 的关系式:
(2)试讨论 A、B 乡中,哪一个的运费较少;
(3)若 B 乡比较困难,最多只能承受 4830 元费用,这种情况下,运输方案如何确定才能使总运费 最少?最少的费用是多少?
26、(12分)如图,在4×3的正方形网格中,每个小正方形的边长都是1.
(1)分别求出线段AB,CD的长度;
(2)在图中画出线段EF,使得EF的长为,用AB、CD、EF三条线段能否构成直角三角形,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
A.一年有365天或366天,所以400人中一定有两人同一天出现,为必然事件.故正确
B.买了100张奖券可能中奖且中奖的可能性很小,故错误
C.一副扑克牌中,随意抽取一张是红桃K,这是不确定事件,故错误
D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是;故错误
故选A
2、A
【解析】
分析:根据中位数、平均数和众数的概念求解即可.
详解:∵共10人,
∴中位数为第5和第6人的平均数,
∴中位数=(3+3)÷3=5;
平均数=(1×2+2×2+3×4+6×2)÷10=3;
众数是一组数据中出现次数最多的数据,所以众数为3.
故选:A.
点睛:本题考查平均数、中位数和众数的概念.一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数;在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.
3、B
【解析】
根据各个多项式的特点,结合平方差公式及完全平方公式即可解答.
【详解】
①不能运用公式法分解因式;②能运用平方差公式分解因式;③不能运用公式法分解因式;④能运用完全平方公式分解因式;⑤能运用完全平方公式分解因式.
综上,能用公式法分解因式的有②④⑤,共3个.
故选B.
本题考查了运用公式法分解因式,熟练运用平方差公式及完全平方公式分解因式是解题的关键.
4、D
【解析】
分段来考虑:点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小,据此选择即可.
【详解】
点E沿A→B运动,△ADE的面积逐渐变大,设菱形的边长为a,∠A=β,
∴AE边上的高为ABsinβ=a•sinβ,
∴y=x•a•sinβ,
点E沿B→C移动,△ADE的面积不变;
点E沿C→D的路径移动,△ADE的面积逐渐减小.
y=(3a-x)•sinβ,
故选D.
本题主要考查了动点问题的函数图象.注意分段考虑.
5、B
【解析】
将,扩大3倍,即将,用,代替,就可以解出此题.
【详解】
解:,
分式值扩大3倍.
故选:B.
此题考查的是对分式的性质的理解和运用,扩大或缩小倍,就将原来的数乘以或除以后代入计算是解题关键.
6、B
【解析】
根据方程有两个不等的实数根,故△>0,得不等式解答即可.
【详解】
试题分析:由已知得△>0,即(﹣3)2﹣4m>0,
解得m<.
故选B.
此题考查了一元二次方程根的判别式.
7、D
【解析】
根据菱形、矩形、正方形的判定和角平分线的性质判断即可.
【详解】
解:、两条对角线互相平分且垂直的四边形是菱形,故选项是假命题;
、两条对角线互相平分且相等的四边形是矩形,故选项是假命题;
、两条对角线互相平分且垂直且相等的四边形是正方形,故选项是假命题;
、角平分线上的点到角两边的距离相等,故选项是真命题;
故选:.
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
8、A
【解析】
根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.
【详解】
∵在△ABC中,AB=3,AC=4,BC=5,
∴AB2+AC2=BC2,
即∠BAC=90°.
又∵PE⊥AB于E,PF⊥AC于F,
∴四边形AEPF是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=EF=AP.
因为AP的最小值即为直角三角形ABC斜边上的高,即等于 ,
∴AM的最小值是
故选A.
本题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
分析:根据函数的自变量取值范围的确定方法,从分式和二次根式有意义的条件列不等式求解即可.
详解:由题意可得
解得x≥-2且x≠3.
故答案为:x≥-2且x≠3.
点睛:此题主要考查了函数的自变量的取值范围,关键是明确函数的构成:二次根式的被开方数为非负数,分式的分母不等于0等条件.
10、3
【解析】
分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.
【详解】
解:分式方程去分母得:x﹣5(x﹣3)=a,
由分式方程有增根,得到x﹣3=0,即x=3,
把x=3代入整式方程得:a=3,
故答案为:3
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
11、
【解析】
根据二次根式的性质和,被开方数大于或等于0,可以求出x的范围.
【详解】
根据题意得:x+2⩾0,
解得:x⩾−2.
故答案是:x⩾−2.
此题考查二次根式有意义的条件,难度不大
12、2n,n2﹣1,n2+1.
【解析】
由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.
【详解】
解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5
n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10
n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…
∴勾股数a=2n,b=n2﹣1,c=n2+1.
故答案为2n,n2﹣1,n2+1.
考点:勾股数.
13、k>1
【解析】
∵关于x的一元二次方程x1﹣1x+k﹣1=0没有实数根,
∴△<0,即(﹣1)1﹣4(k﹣1)<0,
解得k>1,
故答案为k>1.
三、解答题(本大题共5个小题,共48分)
14、(1)4(2)1
【解析】
(1)在直角三角形ABC中,利用勾股定理即可求出AC的长;
(2)首先求出CD的长,利用勾股定理可求出CE的长,进而得到BE=CE-CB的值.
【详解】
(1)在Rt△ABC中,由勾股定理得AC2+CB2=AB2,
即AC2+32=52,
所以AC=4(m),
即这个梯子的顶端A到地面的距离AC为4m;
(2)DC=4-1=3(m),DE=5=m,
在Rt△DCE中,由勾股定理得DC2+CE2=DE2,
即32+CE2=52,
所以CE=5(m),
BE=CE-CB=4-3=1(m),
即梯子的底端B在水平方向滑动了1m.
本题考查了勾股定理在实际生活中的应用,本题中根据梯子长不会变这一关系进行求解是解题的关键.
15、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
【解析】
(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;
(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;
(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
【详解】
解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.
由700x+100(100﹣x)≤40000得x≤50.
∴y与x之间的函数关系式为y=140x+6000(x≤50)
(2)令y≥12600,即140x+6000≥12600,
解得x≥47.1.
又∵x≤50,∴经销商有以下三种进货方案:
(3)∵140>0,∴y随x的增大而增大.
∴x=50时y取得最大值.
又∵140×50+6000=13000,
∴选择方案③进货时,经销商可获利最大,最大利润是13000元.
本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.
16、(1)假命题,举例如a=1,b=-1;反例不唯一.(2)逆命题为“若a2>b2,则a>b”,该命题也是假命题,举例如a=-2,b=1;反例不唯一.
【解析】
(1)判断是否为真命题,需要分析由题设是否能推出结论,本题可从a、b的正负性来考虑反例,如a=1,b=-1来进行检验判断;
(2)先写出逆命题,再按照(1)的思路进行判断.
【详解】
解:(1)假命题,举例如a=1,b=-1,满足a>b,但很明显,,不满足a2>b2,所以原命题是假命题;当然反例不唯一.
(2)逆命题为“若a2>b2,则a>b”,该命题也是假命题,举例如a=-2,b=1,满足a2>b2,但不满足a>b;反例也不唯一.
本题主要考查命题和逆命题的知识,判断命题的真假关键是熟知课本中有关的定义和性质定理等,另外,正确举出反例是判断假命题的常用方法.
17、(1)∠BAC=60°;(2)见解析;(3).
【解析】
(1)如图1中,证明△ABC是等边三角形即可解决问题.
(2)在PA上截取PH,使得PH=PC,连接CH.证明△PCB≌△HCA(SAS)即可;
(3)如图3中,作AH⊥DM交DM的延长线于H,延长AC到N,使得CN=AC,连接DN.证明A,N,D,M四点共圆,外接圆的圆心是点C,推出AD=CM= ,解直角三角形求出AH即可解决问题.
【详解】
解:(1)如图1中,
∵四边形ABCD是菱形,
∴AC⊥BD,∠ABD=∠CBD,
∴∠AOB=90°,
∵AB=2OA,
∴∠ABO=30°,
∴∠ABC=60°,
∵BA=BC,
∴△ABC是等边三角形,
∴∠BAC=60°;
(2)证明:如图2中,
在PA上截取PH,使得PH=PC,连接CH.
∵∠BPC=120°,∠BAC=60°,
∴∠BPC+∠BAC=180°,
∴A,B,P,C四点共圆,
∴∠APC=∠ABC=60°,
∵PH=PC,
∴△PCH是等边三角形,
∴PC=CH,∠PCH=∠ACB=60°,
∴∠PCB=∠HCA,
∵CB=CA,CP=CH,
∴△PCB≌△HCA(SAS),
∴PB=AH,
∴PA=PH+AH=PC+PB;
(3)解:如图3中,作AH⊥DM交DM的延长线于H,延长AC到N,使得CN=AC,连接DN.
∵CA=CD=CN,
∴∠ADN=90°,
∵CD=CN,
∴∠N=∠CDN,
∵∠ACD=60°=∠N+∠CDN,
∴∠N=30°,
∵∠AMD=150°,
∴∠N+∠AMD=180°,
∴A,N,D,M四点共圆,外接圆的圆心是点C,
∴CA=CD=AD=CM=,
在Rt△AHM中,∵∠AMH=30°,
∴MH=AH,设AH=x,则HM=x,
在Rt△ADH中,∵AD2=AH2+DH2,
∴28=x2+(x+2)2,
解得x=或-2(舍弃),
∴AH=,
∴S四边形ACDM=S△ACD+S△ADM=×+×2×=.
本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,解直角三角形,四点共圆,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
18、 (1) B (0,6);(2) y=3x+6;(3)见解析.
【解析】
(1)先把A点坐标代入y=-x+b求出b=6,得到直线AB的解析式为y=-x+6,然后求自变量为0时的函数值即可得到点B的坐标;
(2)利用OB:OC=3:1得到OC=2,C点坐标为(-2,0),然后利用待定系数法求直线BC的解析式;
(3)根据两直线相交的问题,通过解方程组得E(3,3),解方程组得F(-3,-3),然后根据三角形面积公式可计算出S△EBO=9,S△FBO=9,S△EBO=S△FBO.
【详解】
(1)把A(6,0)代入y=-x+b得-6+b=0,解得b=6,
所以直线AB的解析式为y=-x+6,
当x=0时,y=-x+6=6,
所以点B的坐标为(0,6);
(2)解:∵OB:OC=3:1,而OB=6,
∴OC=2,
∴C点坐标为(-2,0),
设直线BC:y=mx+n,
把B(0,6),C(-2,0)分别代入得,解得,
∴直线BC的解析式为y=3x+6;
(3)证明:解方程组得,则E(3,3),
解方程组得,则F(-3,-3),
所以S△EBO=×6×3=9,
S△FBO=×6×3=9,
所以S△EBO=S△FBO.
本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
过点E作EM∥AD,由△ABO是等腰三角形,根据三线合一可知点E是AO的中点,可证得EM=AD=BC,根据已知可求得∠CEF=∠ECF=15°,从而得∠BEF=15°,△BEF为等腰直角三角形,可得BF=EF=FC=BC,因此可证明△BFP≌△MEP(AAS),则EP=FP=FC,在Rt△BFP中,利用勾股定理可求得x,即得答案.
【详解】
过点E作EM∥AD,交BD于M,设EM=x,
∵AB=OB,BE平分∠ABO,
∴△ABO是等腰三角形,点E是AO的中点,BE⊥AO,∠BEO=90°,
∴EM是△AOD的中位线,
又∵ABCD是平行四边形,
∴BC=AD=2EM=2x,
∵EF⊥BC, ∠CAD=15°,AD∥BC,
∴∠BCA=∠CAD=15°,∠EFC=90°,
∴△EFC为等腰直角三角形,
∴EF=FC,∠FEC=15°,
∴∠BEF=90°-∠FEC=15°,
则△BEF为等腰直角三角形,
∴BF=EF=FC=BC=x,
∵EM∥BF,
∴∠EMP=∠FBP,∠PEM=∠PFB=90°,EM=BF,
则△BFP≌△MEP(ASA),
∴EP=FP=EF=FC=x,
∴在Rt△BFP中,,
即:,
解得:,
∴BC=2=1,
故答案为:1.
考查了平行四边形的性质,等腰三角形的性质,三线合一的应用,平行线的性质,全等三角形的判定和性质,利用勾股定理求三角形边长,熟记图形的性质定理是解题的关键.
20、41或33.
【解析】
需要分两种情况进行讨论.由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则BE=AB;同理可得,CF=CD=1.而AB+CD=BE+CF=BC+FE=13+6=19,或 AB+CD=BE+CF=BC-FE=13-6=7由此可以求周长.
【详解】
解:分两种情况,(1)如图,当AE、DF相交时:
∵AE平分∠BAD,
∴∠1=∠2
∵平行四边形ABCD中,AD∥BC,BC=AD=13,EF=6
∴∠1=∠3
∴∠2=∠3
∴AB=BE
同理CD=CF
∴AB+CD=BE+CF=BC+FE=13+6=19
∴平行四边形ABCD的周长= AB+CD+ BC+AD=19+13×2=41;
(二)当AE、DF不相交时:
由角平分线和平行线,同(1)方法可得AB=BE,CD=CF
∴AB+CD=BE+CF=BC-FE=13-6=7
∴平行四边形ABCD的周长= AB+CD+ BC+AD=7+13×2=33;
故答案为:41或33.
本题考查角平分线的定义、平行四边形的性质、平行线的性质等知识,解题关键“角平分线+一组平行线=等腰三角形”.
21、m≥1
【解析】
首先解第一个不等式,然后根据不等式组的解集即可确定m的范围.
【详解】
,
解①得x<1,
∵不等式组的解集是x<1,
∴m≥1.
故答案是:m≥1.
本题考查了一元一次不等式组的解法,一般先求出其中各不等式的解集,再求出这些解集的公共部分,确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
22、45°.
【解析】
根据勾股定理得到逆定理得到△ABC是等腰直角三角形,根据等腰直角三角形的性质即可的结论.
【详解】
解:∵AC=BC=,AB=2,
∴AC2+BC2=2+2=4=22=AB2,
∴△ABC是等腰直角三角形,
∴△ABC中的最小角是45°;
故答案为:45°.
本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.
23、
【解析】
通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.
【详解】
∵在△ABC中,∠C=90°,AC=4,BC=3,
∴AB=5,
∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,
∴AD=AB=5,
∴CD=AD−AC=1,
∴四边形AEDB的面积为,
故答案为.
本题考查的知识点是旋转的性质,解题关键是熟记旋转前后的对应边相等.
二、解答题(本大题共3个小题,共30分)
24、(1)C,C;(2)2400;(3)h.
【解析】
(1)根据中位数的概念即中位数应是第150、151人时间的平均数和众数的定义即可得出答案;
(2)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数;
(3)根据t的取值和每组的人数求出总的时间,再除以总人数即可.
【详解】
解:(1)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;
C组出现的人数最多,则众数再C组;
故答案为C,C;
(2)达到国际规定体育活动时间的人数约,
则达国家规定体育活动时间的人约有4000×60%=2400(人);
(3)根据题意得:(20×0.25+100×0.75+120×1.25+60×2)÷300=,
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
25、(1)表见解析;yA=20x+25×(200−x)=−5x+5000(0⩽x⩽200);yB=15×(240−x)+18×(x+60)=3x+4680(0⩽x⩽200);(2)当x<40时,B乡运费少;当x=40时,A. B两乡运费一样多;当x>40时,A乡运费少;(3)当x=50时,总运费最低,最低费用为9580元.
【解析】
(1)结合已知完善表格,再根据运费=运输单价×数量,得出yA、yB与x的关系式;
(2)令yA=yB,找出二者运费相等的x,以此为界分成三种情况;
(3)由B乡运费最多为4830元,找出x的取值范围,再根据yA+yB的单调性,即可得知当x取什么值时,总运费最低.
【详解】
(1)根据已知补充表格如下:
A乡运往两个粮站的运费yA=20x+25×(200−x)=−5x+5000(0⩽x⩽200);
B乡运往两个粮站的运费yB=15×(240−x)+18×(x+60)=3x+4680(0⩽x⩽200).
(2)令yA=yB,即−5x+5000=3x+4680,
解得:x=40.
故当x<40时,B乡运费少;当x=40时,A. B两乡运费一样多;当x>40时,A乡运费少.
(3)令yB⩽4830,即3x+4680⩽4830,
解得:x⩽50.
总运费y=yA+yB=−5x+5000+3x+4680=−2x+9680,
∵−2<0,
∴y=−2x+9680单调递减.
故当x=50时,总运费最低,最低费用为9580元.
此题考查一次函数的应用,解题关键在于根据题意列出方程.
26、 (1)AB=,CD=;(2)能否构成直角三角形,理由见解析.
【解析】
(1)利用勾股定理求出AB、CD的长即可;
(2)根据勾股定理的逆定理,即可作出判断.
【详解】
(1)
(2)如图,
∵
∴
∴以AB、CD、EF三条线可以组成直角三角形.
考查勾股定理, 勾股定理的逆定理,比较基础,熟练掌握勾股定理以及勾股定理的逆定理是解题的关键.
题号
一
二
三
四
五
总分
得分
A品牌手表
B品牌手表
进价(元/块)
700
100
售价(元/块)
900
160
C 站
D 站
总计
A 乡
x 吨
200 吨
B 乡
300 吨
总计
240 吨
260 吨
500 吨
方案
A品牌(块)
B品牌(块)
①
48
52
②
49
51
③
50
50
福建省泉州市石狮市2024年九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份福建省泉州市石狮市2024年九年级数学第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省部分市县2024年数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份福建省部分市县2024年数学九年级第一学期开学达标检测模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省石狮市九上数学开学检测试题【含答案】: 这是一份2024年福建省石狮市九上数学开学检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。